Hello!
Recall the period of an orbit is how long it takes the satellite to make a complete orbit around the earth. Essentially, this is the same as 'time' in the distance = speed * time equation. For an orbit, we can define these quantities:
← The circumference of the orbit
speed = orbital speed, we will solve for this later
time = period
Therefore:

Where 'r' is the orbital radius of the satellite.
First, let's solve for 'v' assuming a uniform orbit using the equation:

G = Gravitational Constant (6.67 × 10⁻¹¹ Nm²/kg²)
m = mass of the earth (5.98 × 10²⁴ kg)
r = radius of orbit (1.276 × 10⁷ m)
Plug in the givens:

Now, we can solve for the period:

Answer:
the color is green
- 602.93 nm ( orange color )
the observation is that there is a change of visible color
Explanation:
A) wavelength of visible light that is most strongly reflected from a point on a soap
refraction n = 1.33
wall thickness (t) = 290 nm
2nt = (2m +1 ) ∝/2 -----equation 1
note when m = 0
therefore ∝ = 4nt/ 1 = 4 * 1.33 * 290 = 1542.8nm we will discard this
when m = 1
equation 1 becomes
∝ = 4nt/3 =( 4 * 1.33 * 290) / 3 = 1542.8 / 3 = 514.27 ( wavelength )
the color is green
B) the wavelength when the wall thickness is 340 nm
∝ = 4nt / 2m +1
where m = 1
∝ = (4 * 1.33 * 340 ) / 3 = 1808.8 / 3 = 602.93 nm ( orange color )
the observation is that there is a change of visible color
Are their any multiple choice questions? Also you said, "<span>Birds that have adapted to temperatures in their environment must find a way to adapt." It says they already adapted lol</span>
Answer:twice of initial value
Explanation:
Given
spring compresses
distance for some initial speed
Suppose v is the initial speed and k be the spring constant
Applying conservation of energy
kinetic energy converted into spring Elastic potential energy

When speed doubles

divide 1 and 2


Therefore spring compresses twice the initial value