Velocity is the rate of change of position with respect to time, whereas acceleration is the rate of change of velocity. Both are vector quantities (and so also have a specified direction), but the units of velocity are meters per second while the units of acceleration are meters per second squared.
Answer:
Your pinball machine was built using two kinds of simple machines: a lever and an inclined plane. The lever shot the marble to the top of the box with lots of force. The inclined planes made the marble wind its way down to the bottom.
Answer:
Cart A
Explanation:
Momentum can be computed by finding the product of mass and velocity. To solve this, you can use the formula below to find the greatest momentum:
p = mv
where:
p = momentum (kgm/s) m = mass (kg) v = velocity (m/s)
Because carts are moving along with the weights, we need to consider the whole system. This means that you need to add in the masses and the mass of the cart.
<u>Cart A:</u>
m = 200kg + 0 kg = 200 kg
v = 4.8 m/s
p = 200kg x 4.8 m/s = 960 kg-m/s
<u>Cart B:</u>
m = 200kg + 20 kg = 220 kg
v = 4.0 m/s
p = 220kg x 4.0 m/s = 880 kg-m/s
<u>Cart C:</u>
m = 200kg + 40 kg = 240 kg
v = 3.8 m/s
p = 240kg x 3.8 m/s = 912 kg-m/s
<u>Cart D:</u>
m = 200kg + 60 kg = 260 kg
v = 3.5 m/s
p = 260kg x 3.5 m/s = 910 kg-m/s
As you can see, Cart A has the greatest momentum.
Explanation:
v=?, u=0, a=?, S=22m.
Using the formula, S=ut+½at²
22={0×5}+(½.a.5²)
22=½.a.5²
a=44/25 = 1.76m/s².
Therefore, net force = work done = ma = 48×1.76 = 84.48N.
therefore, power = work done/time = 84.48/5 = 16.896W.
hope this helps you.
here's the solution,
The <em>radius</em> of the circle =<u> 3 km</u>
distance covered = <em>circumference</em> of the circle,
So, Circumference :
=》

=》

=》

(a). Distance covered by moving object is 18.84 km
(b). 0 km
now, Displacement of the object is 0 km, because displacement is the shortest distance from stating point to the destination, but the object returns back to the starting point, hence magnitude of displacement is 0.