Answer:
proportional to the current in the wire and inversely proportional to the distance from the wire.
Explanation:
The magnetic field produced by a long, straight current-carrying wire is given by:

where
is the vacuum permeability
I is the current intensity in the wire
r is the distance from the wire
From the formula, we notice that:
- The magnitude of the magnetic field is directly proportional to I, the current
- The magnitude of the magnetic field is inversely proportional to the distance from the wire, r
Therefore, correct option is
proportional to the current in the wire and inversely proportional to the distance from the wire.
Answer:
The surface gravity is inversely proportional to the square of the radius of the planet
Explanation:
The gravity at the surface of a planet is given by:

where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
We see from the formula that the surface gravity is inversely proportional to the square of the radius of the planet, R.
At the Earth's surface, the value of the surface gravity is approximately 9.81 m/s^2.
Answer:

Explanation:
The time lag between the arrival of transverse waves and the arrival of the longitudinal waves is defined as:

Here d is the distance at which the earthquake take place and
is the velocity of the transverse waves and longitudinal waves respectively. Solving for d:

Answer:
the bending moment will be W from either sides
Explanation:
bending moment= force (load) * perpendicular distance, if I understand the question the distance will be 1/2 of the length
=> f x 1/2(l) =W*1/2(2) =W
Answer:
I think it is Cinder Cone volcano.