Answer:
A) Three hole punch and either a layered plastic or paper
B) Identify the lengths involved ,
Length of input arm / length of output arm = L1/ L2
Explanation:
<u>a) Materials involved includes :</u>
Three hole punch and either a layered plastic or paper
Identify the forces acting on the three-hole punch which are Input and output forces
Identify the points where they act
<u>B) procedures involved </u>
The mechanical advantage = output force / input force
step one: Identify the lengths involved
assuming no friction or relatively small friction \
mechanical advantage can be calculated as : Length of input arm / length of output arm = L1/ L2
Answer:
Mass, m = 26.54kg
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
Where;
- Fapp is the applied force
- Fg is the force due to gravitation
<u>Given the following data;</u>
Net force, Fnet = 345
Acceleration, a = 3.2m/s²
<u>To find mass;</u>
Fnet = Fapp + Fg
Fnet = ma + mg
Fnet = m(a+g)
m = Fnet/(a+g)
We know that acceleration due to gravity, g = 9.8m/s²
Substituting into the equation, we have;
m = 345/(3.2 + 9.8)
m = 345/13
Mass, m = 26.54kg
#1
As we know that

now plug in all data into this


now from the formula of strain




#2
As we know that
pressure * area = Force
here we know that


now force is given as

#3
As we know that density of water will vary with the height as given below

here we know that


now density is given as


#4
as we know that pressure changes with depth as per following equation

here we know that

now we will have



here we will have

so it is 20.1 m below the surface
#5
Here net buoyancy force due to water and oil will balance the weight of the block
so here we will have




so it is 3.48 cm below the interface