Answer:
1.08 s
Explanation:
From the question given above, the following data were obtained:
Height (h) reached = 1.45 m
Time of flight (T) =?
Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:
Height (h) = 1.45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1.45 = ½ × 9.8 × t²
1.45 = 4.9 × t²
Divide both side by 4.9
t² = 1.45/4.9
Take the square root of both side
t = √(1.45/4.9)
t = 0.54 s
Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).
Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:
Time (t) taken to reach the height = 0.54 s
Time of flight (T) =?
T = 2t
T = 2 × 0.54
T = 1.08 s
Therefore, it will take the kangaroo 1.08 s to return to the earth.
The formula to find the kinetic energy is:
Ek= 1/2 × m × v^2
1. Ek= 1/2×15×3^2
= 67.5 J
2.Ek= 1/2×8×4^2
=64 J
3.Ek= 1/2×12×5^2
= 150 J
4.Ek= 1/2×10×6^2
= 180 J
So the fourth dog has the most kinetic energy.
The emerging velocity of the bullet is <u>71 m/s.</u>
The bullet of mass <em>m</em> moving with a velocity <em>u</em> has kinetic energy. When it pierces the block of wood, the block exerts a force of friction on the bullet. As the bullet passes through the block, work is done against the resistive forces exerted on the bullet by the block. This results in the reduction of the bullet's kinetic energy. The bullet has a speed <em>v</em> when it emerges from the block.
If the block exerts a resistive force <em>F</em> on the bullet and the thickness of the block is <em>x</em> then, the work done by the resistive force is given by,

This is equal to the change in the bullet's kinetic energy.

If the thickness of the block is reduced by one-half, the bullet emerges out with a velocity v<em>₁.</em>
Assuming the same resistive forces to act on the bullet,

Divide equation (2) by equation (1) and simplify for v<em>₁.</em>

Thus the speed of the bullet is 71 m/s
Answer:
The principle of conservation of energy states that in a closed system, the energy can neither be created nor destroyed between interacting particles and remains constant or transformed from one form to another
In the jet engine, the release of jet changes the number of interacting particles in the engine, and given that energy cannot be created in the instantaneously closed system of the engine, energy is carried away and therefore lost by particles in the jet exhaust
The conservation of energy principle is therefore obeyed in the condition in which the jet engine losses energy by the release of jet
Explanation:
Answer:
In a way that is suitable or right for a particular situation or occasion: She didn't think we were appropriately dressed for a wedding. Business leaders who acted appropriately were widely praised. See. appropriate.