Attach the picture therefore we can answer !
The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
Answer:
See below
Explanation:
Set up your pendulum
measure its length and time the period ( you could time 100 of them and divide the time result by 100 to get the period, T)
then use
T = 2 pi sqrt (L/g) T = period L = length g = gravity
The units would be consistent around the world, allowing for easy comprehension of industrial diagrams and requirements as well as easier communication of engineers and scientists with one another.
The resistance of the cylindrical wire is
.
Here
is the resistance,
is the length of the wire and
is the area of cross section. Since the wire is cylindrical
. Rearranging the above equation,

Here
.
Substituting numerical values,

Te diameter of the wire is 