Answer:
Explanation:
mass of refrigerator, m = 110 kg
coefficient of static friction, μs = 0.85
coefficient of kinetic friction, μk = 0.59
(a) the minimum force required to just start the motion in refrigerator
F = μs x mg
F = 0.85 x 110 x 9.8
F = 916.3 N
(b) The force required to move the refrigerator with constant speed
F' = μk x mg
F' = 0.59 x 110 x 9.8
F' = 636.02 N
(c) Let a be the acceleration.
Net force = Applied force - friction force
F net = 950 - 636.02
F net = 313.98 N
a = F net / mass
a = 313.98 / 110
a = 2.85 m/s²
<span>won
adjective
Verb phrases are verbs that may function as a predicate, adjective, or adverb. </span>
(a) "That he said" is an adjective modifying "word". However, this contains the s ubject"he" and the verb "said". It is a clause and NOT a phrase. Phrases can only have either a verb or a noun.
<span>(b) There's only one verb "was" but it does not come with a complement, object, modifier, or other verb. Hence, it's NOT a verb phrase. </span>
<span>(c) "Shall be" consists of the modal shall and the be-verb be. This is a perfect example of a verb phrase that functions as a VERB PHRASE. </span>
<span>(d) "Roared" and "charged" are two verbs referring to different subjects. They do not come with a complement, object, modifier, or another verb. Hence, they're NOT a verb phrase. "As the bull charged" is a clause and not a phrase.</span>
2.5 better than the first one more game to go hard but I 46 the bucks
We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:

Where

differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question,

is the distance between both rays.


At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:

For red we have:

We finally have:
Answer:
Planets that are farther from the sun than the earth (all but Mercury and Venus) will exhibit retrograde motion.
If the position of the planet is observed relative to the background stars, the planet will appear to move backward relative to the stars when the earth is moving in an Eastward direction faster than the planet, and the planet appears to move backwards relative to the stars
(The planet will be on the side of the earth that is opposite that of the sun)