To determine the mass of the sample, first find the volume difference after and before the aluminum was placed, the volume change is equal to the volume of the submerged object, in this case aluminum.
Then knowing volume of aluminum and the density of it, we can solve for the mass.
D = m/v
Dv = m
2.7 g/ml • 8 ml = 21.6 grams.
Answer:
24 atm.
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 240 L
Initial pressure (P₁) = 2 atm
Final volume (V₂) = 20 L
Temperature = constant
Final pressure (P₂) =?
The final pressure required, can be obtained by using the Boyle's law equation as shown below:
P₁V₁ = P₂V₂
2 × 240 = P₂ × 20
480 = P₂ × 20
Divide both side by 20
P₂ = 480 / 20
P₂ = 24 atm
Thus, the final pressure required is 24 atm.
<h2><em><u>ᎪꪀsωꫀᏒ</u></em></h2>
➪Methane (CH4) is oxidized with molecu- lar oxygen (O2) to carbon dioxide (CO2).