Answer:
V₂ = 1070 mL or 1.07 L
Solution:
Data Given;
P₁ = 1170 mmHg
V₁ = 915 mL
T₁ = 24 °C + 273 K = 297 K
P₂ = 842 mmHg
V₂ = ?
T₂ = - 23 °C + 273 K = 250 K
According to Ideal gas equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = P₁ V₁ T₂ / P₂ T₁
Putting Values,
V₂ = (1170 mmHg × 915 mL × 250 K) ÷ (842 mmHg × 297 K)
V₂ = 1070 mL or 1.07 L
A 20 L sample of the gas contains 8.3 mol N₂.
According to <em>Avogadro’s Law,</em> if <em>p</em> and <em>T</em> are constant
<em>V</em>₂/<em>V</em>₁ = <em>n</em>₂/<em>n</em>₁
<em>n</em>₂ = <em>n</em>₁ × <em>V</em>₂/<em>V</em>₁
___________
<em>n</em>₁ = 0.5 mol; <em>V</em>₁ = 1.2 L
<em>n</em>₂ = ?; <em>V</em>₂ = 20 L
∴<em>n</em>₂ = 0.5 mol × (20 L/1.2 L) = 8.3 mol
Answer:
315.
Explanation:
Hello.
In this case, since the given number has five significant figures as the zero is to the right of the first nonzero digit (3), if it is required to report it with three significant figures, it is necessary to "cut" it at the first five without any rounding since the subsequent zero is less than five.
Thus the number turns out:
315
Best regards.
Electric motors are an essential part of our daily life as many systems, applications, and services depend on them. Motors today have a long service life and require a minimum level of maintenance to make sure that they perform efficiently. In large buildings, motors have to be maintained on a regular basis because they need to be in operation all the time; one small problem could cause a great loss to the organization.
Usually in large organizations, a motor maintenance program is carried out in which the causes of motor failures are identified and some necessary steps are taken to avoid them or lower their impact. Motors need to be inspected regularly, and other maintenance activities need to be performed to ensure efficient operation. Whenever a problem occurs, it should be corrected immediately to avoid further loss.
According to Newton's first law of motion, it takes an unbalanced force to move an object at rest.
I hope this helps :)