First we solve this equation:
x = cos^-1(0) = pi/2 and 3pi/2
Now, this is the answer for angles between 0 and 2pi
but there are "negative angles" and angles larger than 2pi
so the general solution that includes all of these cases is:
x = pi/2 + n*pi
here n is any integer.
<em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em>
<em>Hey</em><em>!</em><em>!</em>
<em>Sol</em><em>ution</em><em>,</em>
<em>Radius</em><em>(</em><em>r</em><em>)</em><em>=</em><em> </em><em>6</em><em> </em><em>mm</em>
<em>Circumf</em><em>erence</em><em> </em><em>of</em><em> </em><em>circle</em><em>=</em><em>?</em>
<em>Now</em><em>,</em>
<em>Circumfe</em><em>rence</em><em> </em><em>of</em><em> </em><em>circle</em><em>=</em><em>2</em><em> </em><em>pi</em><em>e</em><em> </em><em>r</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>2</em><em>*</em><em>pi</em><em>*</em><em>6</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>1</em><em>2</em><em> </em><em>pie</em>
<em>So </em><em>the</em><em> </em><em>ans</em><em>wer</em><em> </em><em>is</em><em> </em><em>1</em><em>2</em><em> </em><em>pie.</em>
<em>Hope </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
<em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em>
Step-by-step explanation:
End behavior of a polynomial function is the behavior of the graph of f(x) as x tends towards infinity in the positive or negative sense.
Given function:
f(x) = 2x⁶ - 2x² - 5
To find the end behavior of a function:
- Find the degree of the function. it is the highest power of the variable.
Here the highest power is 6
- Find the value of the leading coefficient. It is the number before the variable with the highest power.
Here it is +2
We observe that the degree of the function is even
Also the leading coefficient is positive.
For even degree and positive leading coefficient, the end behavior of a graph is:
x → ∞ , f(x) = +∞
x → -∞ , f(x) = +∞
The graph is similar to the attached image
Learn more:
End behavior brainly.com/question/3097531
#learnwithBrainly
Answer:
48 cubic yard
Step-by-step explanation:
