Answer: a) io=233.28 A ( initial current); b) τ=R*C= 22.31 ms; c) 81.7 ms
Explanation: In order to explain this problem we have to use, the formule for the variation of the current in a RC circuit:
I(t)=io*Exp(-t/τ)
and also we consider that io=V/R=(1.5/6.43*10^3)
=233.28 A
then the time constant for the RC circuit is τ=R*C=6.43*10^3*3.47*10^-6
=22.31 ms
Finally the time to reduce the current to 2.57% of its initial value is obtained from:
I(t)=io*Exp(-t/τ) for I(t)/io=0.0257=Exp(-t/τ) then
ln(0.0257)*τ =-t
t=-ln(0.0257)*τ=81.68 ms
Answer:
P = 5.22 Kg.m/s
Explanation:
given,
mass of the projectile = 1.8 Kg
speed of the target = 4.8 m/s
angle of deflection = 60°
Speed after collision = 2.9 m/s
magnitude of momentum after collision = ?
initial momentum of the body = m x v
= 1.8 x 4.8 = 8.64 kg.m/s
final momentum after collision
momentum along x-direction
P_x = m v cos θ
P_x = 1.8 x 2.9 x cos 60°
P_x = 2.61 kg.m/s
momentum along y-direction
P_y = m v sin θ
P_y = 1.8 x 2.9 x sin 60°
P_y = 4.52 kg.m/s
net momentum of the body


P = 5.22 Kg.m/s
momentum magnitude after collision is equal to P = 5.22 Kg.m/s
Explanation:
Below is an attachment containing the solution
C decreased the factor cuz the max is smaller
35 protons are present in an element whose atomic number is 35.
<u>Explanation:
</u>
In an atom of an element, the number of protons = atomic number
Number of protons = number of electrons
Mass Number = number of protons + number of neutrons
Hence, an atom with atomic number 35 will have 35 protons.