W=mgh W=(20)(9.8)(1) w=196J
Answer:
The moon has no atmosphere
Explanation:
The temperatures on the surface of the Moon vary much more than those on Earth because the moon has no atmosphere (third answer in the list), and therefore there are no molecules that could retain residual heat and make the change from day to night a softer transition.
Answer:
AT
Explanation:
Dimensions of current = A
Dimensions of time = T
Current = Charge / time
Therefore Charge = Current × time
[Charge] = [Current] × [time]
= AT
The maximum height reached by the ball is 0.46m.
To find the answer, we have to know about the potential energy of a spring mass system.
<h3>How to find the maximum height reached by the ball?</h3>

- We have to find the maximum height reached by the ball.
- Thus, we have the expression for potential energy of a spring mass system and that of gravitational field as,


Thus, we can conclude that, the maximum height reached by the ball is 0.46m.
Learn more about the potential energy here:
brainly.com/question/26962934
#SPJ4
The power that heat pump draws when running will be 6.55 kj/kg
A heat pump is a device that uses the refrigeration cycle to transfer thermal energy from the outside to heat a building (or a portion of a structure).
Given a heat pump used to heat a house runs about one-third of the time. The house is losing heat at an average rate of 22,000 kJ/h and if the COP of the heat pump is 2.8
We have to determine the power the heat pump draws when running.
To solve this question we have to assume that the heat pump is at steady state
Let,
Q₁ = 22000 kj/kg
COP = 2.8
Since heat pump used to heat a house runs about one-third of the time.
So,
Q₁ = 3(22000) = 66000 kj/kg
We known the formula for cop of heat pump which is as follow:
COP = Q₁/ω
2.8 = 66000 / ω
ω = 66000 / 2.8
ω = 6.66 kj/kg
Hence the power that heat pump draws when running will be 6.55 kj/kg
Learn more about heat pump here :
brainly.com/question/1042914
#SPJ4