The equation in slope-intercept form for the line that passes through the point ( -1 , -2 ) and is perpendicular to the line − 4 x − 3 y = − 5 is 
<em><u>Solution:</u></em>
<em><u>The slope intercept form is given as:</u></em>
y = mx + c ----- eqn 1
Where "m" is the slope of line and "c" is the y - intercept
Given that the line that passes through the point ( -1 , -2 ) and is perpendicular to the line − 4 x − 3 y = − 5
Given line is perpendicular to − 4 x − 3 y = − 5
− 4 x − 3 y = − 5
-3y = 4x - 5
3y = -4x + 5

On comparing the above equation with eqn 1, we get,

We know that product of slope of a line and slope of line perpendicular to it is -1

Given point is (-1, -2)
Now we have to find the equation of line passing through (-1, -2) with slope 
Substitute (x, y) = (-1, -2) and m = 3/4 in eqn 1



Thus the required equation of line is found
Answer: $700
Step-by-step explanation:
The store is selling at 30% off.
If a mattress is $1,000, first find out what 30% of $1,000 is:
= 1,000 * 30%
= $300
The store is selling 30% off, this means that they are reducing the price by 30%:
= 1,000 - 300
= $700
That looks like a translation; let's check. We have
A(-5,1), B(-3,7), A'(3,-1), B'(5,5)
If it's a translation by T(x,y) we'd have
A' = A + T
B' = B + T
so
T = A' - A = (3,-1) - (-5,1) = (8,-2)
and also
T = B' - B = (5, 5) - (-3, 7) = (8,-2)
They're the same so we've verified this transformation is a translation by (8,-2), eight right, two down.
Assuming a d-heap means the order of the tree representing the heap is d.
Most of the computer applications use binary trees, so they are 2-heaps.
A heap is a complete tree where each level is filled (complete) except the last one (leaves) which may or may not be filled.
The height of the heap is the number of levels. Hence the height of a binary tree is Ceiling(log_2(n)), for example, for 48 elements, log_2(48)=5.58.
Ceiling(5.58)=6. Thus a binary tree of 6 levels contains from 2^5+1=33 to 2^6=64 elements, and 48 is one of the possibilities. So the height of a binary-heap with 48 elements is 6.
Similarly, for a d-heap, the height is ceiling(log_d(n)).
Answer:
137
Step-by-step explanation:
2(-9)^2+5(-9)+20
2(81)-45+20
162-45+20
117+20
137