The answer is 1952 because you have to add all of the numbers together
Answer:
B) 4
Step-by-step explanation:
1. <em>It is either 3 or 4</em>, since those are only two angles comparing the lighthouse and the boat.
2. The angle of depression is noted below the horizontal and above the actual line, and out of 3 and 4, <em>4 is the only angle that is below its corresponding horizontal</em>.
So, the angle of depression from the lighthouse to the boat is 4.
Answer:
Step-by-step explanation:
<u>Given:</u>
- AB = 192 cm
- AC : CB = 1 : 3
- CD = BC/12
- The distance between midpoints of AD and CB = x
<u>Find the length of AC and CB:</u>
- AC + CB = AB
- AC + 3AC = 192
- 4AC = 192
- AC = 192/4
- AC = 48 cm
<u>Find CB:</u>
<u>Find the length of CD:</u>
- CD = BC/12 = 144/12 = 12 cm
<u>Find the length of AD:</u>
- AD = AC - CD = 48 - 12 = 36 cm
<u>Find the midpoint of AD:</u>
<u>Find the midpoint of CB:</u>
- m(CB) = AC + 1/2CB = 48 + 144/2 = 48 + 82 = 130 cm
<u>Find the distance between the midpoints:</u>
The answer is 24 guppies. First find the volume of the tank, then divide that volume by 576 (you should get 8), then you multiply 3 guppies by 8 to get 2e
Answer:
(c, m) = (45, 10)
Step-by-step explanation:
A dozen White Chocolate Blizzards generate more income and take less flour than a dozen Mint Breezes, so production of those should clearly be maximized. Making 45 dozen Blizzards does not use all the flour, so the remaining flour can be used to make Breezes.
Maximum Blizzards that can be made: 45 dz. Flour used: 45×5 oz = 225 oz.
The remaining flour is ...
315 oz -225 oz = 90 oz
This is enough for (90 oz)/(9 oz/dz) = 10 dozen Mint Breezes. This is in the required range of 2 to 15 dozen.
Kelly should make 45 dozen White Chocolate Blizzards and 10 dozen Mint Breezes: (c, m) = (45, 10).
__
In the attached graph, we have reversed the applicable inequalities so the feasible region shows up white, instead of shaded with 5 different colors. The objective function is the green line, shown at the point that maximizes income. (c, m) ⇔ (x, y)