Answer:
C a basketball player pushes into another one and they both fall to the left
Explanation:
I believe his is the answer because I don't see any force and not enough reaction
The power developed by the student is 756.9 J/s and remains the same if the student takes the same time to climb the stairs when climbing it in two's and three's.
<h3>What is power?</h3>
Power is the rate at work is done.
- Power = work done/time
- work done = mass × acceleration due to gravity × height
Work done = 65.5 × 10 × (18 × 0.165) = 1945.35 J
Power = 1945.35/2.57 = 756.9 J/s
If the student climbed the steps in two or three at a time, the power does not change if the time remains the same.
- Time required = Energy/ power
The time required to convert the Big Mac meal from McDonalds = 4 853 440/756.9
Time required = 6412.26 seconds
Therefore, from the power developed by the student, it will take him 6412.26 seconds to convert all the energy in a Big Mac meal.
Learn more about power at: brainly.com/question/1634438
#SPJ1
Answer:
The working of an electric motor is based on the assumption that a conductive current generates a magnetic field around it. Consider the following situation,
Take two bar magnets, and leave a small space between the poles facing each other. Now, take a small conductive wire length and make a loop. Keep this connection between the magnets, so that it is still inside the magnet’s area of influence. Now for the final part. Attach loop ends to battery terminals.
As electricity flows through your simple circuit, you will find that your loop “moves.” The magnet’s magnetic field interferes with that generated by the conductor’s electrical current flow. Because the loop has become a magnet, it will draw one side of it to the magnet’s north pole, and the other to the south pole. That causes the loop to rotate continuously. This is the idea of an electric motor working.
Answer:
3.64 m
Explanation:
m = Mass of object = 70 kg
Kinetic energy of the object = 2500 J
g = Acceleration due to gravity = 
h = Height from which the object is dropped
Kinetic energy is given by

From conservation of energy we get kinetic energy equal to potential energy.

The object was released from a height of 3.64 m.