Yes.
-- 'Acceleration' does NOT mean 'speeding up'.
It means ANY change in the speed OR direction of motion ...
speeding up, slowing down, or turning.
-- If an object is NOT moving in straight line at constant speed,
then its motion is accelerated.
-- In circular motion, or even just going around a curve,
the object is accelerating, because its direction is constantly
changing, even if its speed is constant.
a) 1.48 m/s
The tuning fork is moving by simple harmonic motion: so, the maximum speed of the tip of the prong is related to the frequency and the amplitude by

where
is the maximum speed
is the angular frequency
A is the amplitude
For the tuning fork in the problem, we have
, where f is the frequency
is the amplitude
Therefore, the maximum speed is

b) 
The fly's maximum kinetic energy is given by

where
is the mass of the fly
is the maximum speed
Substituting into the equation, we find

The answer is it will supply 1.1 x 10⁹ J of energy each second.
we can calculate this by using the following equation;
P = W/t
<span>W = P x t
</span><span>and by work energy relation;
E = W = P x t
</span>1 watt = 1j/s
1megawatt = 1000000 = 10⁶ j/s
<span>E = 1100 x 106 x 1 </span>
E = 1.1 x 10⁹ J
Explanation:
The electric field is defined as the change in the properties of space caused by the existence of a positively (+) or negatively (-) charged particle. The electric field can be represented by infinitely many lines from a particle, and those lines never intersect each other. Depending on the type of charge we can see different cases:
- Let's say we have a <u>positive charge alone (</u>image 1)<u>.</u> The field lines are drawn from the centre of the particle outwards to infinity (in other words, they disappear from the edge of the picture). Meaning the direction of the electric field points outwards the particle.
- For a <u>negative charge alone </u>(image 2)<u>,</u> the lines come from infinity to the centre, and point towards the particle (i.e. lines appear from the edge of the picture).
Let's see what happens if we have two charges together:
- <u>Two positive charges</u> (image 3): Since the charges are of the same type (positive), the particles repel each other. Then the field lines will avoid each other so they do not join. The charge is positive, so lines point outwards.
- <u>Two negative charges</u> (image 4): Again, the charges are both negative, so they repel. But they are negative, so the field points inwards.
- <u>Negative and positive charges</u> (image 5): They are different charges, so the force between them is attractive. This causes the field lines from both to join. They go out of the positive and come into the negative particle.
Image 6:
The lines are passing through infinite points of the space. If we choose a certain point and measure the electric field, we can see to which direction the electric field points. This is the direction of the electric field vector. It does not matter which point we choose; the electric field vector touches the field line only at this point, which means it is tangent to the field line.
Speed most often describes acceleration or a high rate of motion. ... As a verb, it means to “move along quickly,” like how you speed around on your bike. Direction is defined as the path that something takes, the path that must be taken to reach a specific place, the way in which something is starting to develop or the way you are facing