If he feels like, is interested in it, and is able to grasp it, then why not ? Why not indeed ?
Solution:
Let the slope of the best fit line be represented by ''
and the slope of the worst fit line be represented by ''
Given that:
= 1.35 m/s
= 1.29 m/s
Then the uncertainity in the slope of the line is given by the formula:
(1)
Substituting values in eqn (1), we get
= 0.03 m/s
Because of the hint we can conclude what equation we need to solve this problem. We have power and duration that means that we need to express energy:
1 joule = 1watt * 1 second
or
E (energy) = P (power) * t (time duration)
E = 350 * 30 = 10500 joules.
Answer:
Explanation:
Regardless of the initial velocity of the pebble, the acceleration of the pebble is equal to the gravitational acceleration which is equal to 9.8 m/s2 towards downwards direction.
This can be shown by Newton's Second Law. According to the law, the net force applied on an object is equal to mass times acceleration of that object.
During the downward motion, the only force acting on the pebble is the gravitational force, hence its acceleration is equal to gravitational acceleration.
Answer:
ΔR = 9 s
Explanation:
To calculate the propagation of the uncertainty or absolute error, the variation with each parameter must be calculated and the but of the cases must be found, which is done by taking the absolute value
The given expression is R = 2A / B
the uncertainty is ΔR = | | ΔA + | | ΔB
we look for the derivatives
= 9 / B
= 9A ( )
we substitute
ΔR = ΔA + ΔB
the values are
ΔA = 2 s
ΔB = 3 s
ΔR = 2 + 3
ΔR = 1.636 + 7.14
ΔR = 8,776 s
the absolute error must be given with a significant figure
ΔR = 9 s