1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
3 years ago
13

assuming 100% efficient energy conversion how much water stored behind a 50 centimeter high hydroelectric dam would be required

to charged the battery ​
Physics
1 answer:
Nataly [62]3 years ago
4 0

Answer:

The amount of water that will power a battery with that rating = 7.35 m³

Explanation:

The power rating for the battery is missing from the question.

Complete Question

Assuming 100% efficient energy conversion how much water stored behind a 50 centimeter high hydroelectric dam would be required to charged the battery with power rating, 12 V, 50 Ampere-minutes

Solution

Potential energy possessed by water at that height = mgH

m = mass of the water = ρV

ρ = density of water = 1000 kg/m³

V = volume of water = ?

g = acceleration due to gravity = 9.8 m/s²

H = height of water = 50 cm = 0.5 m

Potential energy = ρVgH = 1000 × V × 9.8 × 0.5 = (4900V) J

Energy of the battery = qV

q = 50 A.h = 50 × 60 = 3,000 C

V = 12 V

qV = 3,000 × 12 = 36,000 J

Energy = 36,000 J

At a 100% conversion rate, the energy of the water totally powers the battery

(4900V) = (36,000)

4900V = 36,000

V = (36,000/4900)

V = 7.35 m³

Hope this Helps!!!

You might be interested in
Based on the law of conversation of energy how can we reasonably improve a machines ability to do work?
tensa zangetsu [6.8K]
MARK ME BRAINLIEST!!

your answer should be “C”.
4 0
3 years ago
Light travels _______ in a material with a higher index of refraction
exis [7]
Light will travel more slowly in a material with a higher index of refraction 
4 0
3 years ago
Read 2 more answers
A 3-kg rock is thrown upward with a force of 200 N at a location where the local gravitational acceleration is 9.79 m/s2 . Deter
expeople1 [14]

Answer: 56.87m/s^{2}

Explanation:

If we make an analysis of the net force F_{net} of the rock that was thrown upwards, we will have the following:

F_{net}=F_{up}-W  (1)

Where:

F_{up}=200N is the force with which the rock was thrown

W is the weight of the rock

Being the weight the relation between the mass m=3kg of the rock and the acceleration due gravity g=9.79m/s^{2} :

W=m.g=(3kg)(9.79m/s^{2}) (2)

W=29.37 N (3)

Substituting (3) in (1):

F_{net}=200N-29.37 N  (4)

F_{net}=170.63 N  (5) This is the net Force on the rock

On the other hand, we know this force is equal to the multiplication of the mass with the acceleration, according to Newton's 2nd Law:

F_{net}=m.a  (6)

Finding the acceleration a:

a=\frac{F_{net}}{m}  (7)

a=\frac{170.63 N}{3kg} (8)

Finally:

a=56.87m/s^{2}

3 0
2 years ago
Propose a hypothesis for how the position of the ball will affect the amount of its gravitational pull energy
Ray Of Light [21]

<em><u>throwing a ball up initially has a lot of kinetic energy because it is moving upwards ( kinetic energy is energy which a body possesses by virtue of being in motion.) this all then get converted to gravitational potential energy, and for a moment it is stationary before it begins to fall again.  by the time it has returned again, all the gravitational potential energy has turned back into kinetic.</u></em>

4 0
2 years ago
Find the wavelength in meters for a transverse mechanical wave with an amplitude of 10 cm and a radian frequency of 20π rad/s if
nydimaria [60]

Answer:

The wavelength of the wave is 20 m.

Explanation:

Given that,

Amplitude = 10 cm

Radial frequency \omega = 20\pi\ rad/s

Bulk modulus = 40 MPa

Density = 1000 kg/m³

We need to calculate the velocity of the wave in the medium

Using formula of velocity

v=\sqrt{\dfrac{k}{\rho}}

Put the value into the formula

v=\sqrt{\dfrac{40\times10^{6}}{10^3}}

v=200\ m/s

We need to calculate the wavelength

Using formula of wavelength

\lambda =\dfrac{v}{f}

\lambda=\dfrac{v\times2\pi}{\omega}

Put the value into the formula

\lambda=\dfrac{200\times2\pi}{20\pi}

\lambda=20\ m

Hence, The wavelength of the wave is 20 m.

5 0
2 years ago
Other questions:
  • An object that is accelerating may be
    13·1 answer
  • A driver of a car took a day trip around the coastline driving at two different speeds. He drove 7070 miles at a slower speed an
    13·2 answers
  • I really need help asap.
    10·2 answers
  • Suppose you walk 18.0 m straight west and then 25.0 m straight north, how far are you from your starting point? answer
    6·1 answer
  • A jet of water squirts out horizontally from a
    15·1 answer
  • The sense of smell helps protect us against danger. Explain why.
    13·1 answer
  • Which term describes a gap in the geologic record that occurs when sedimentary rocks cover an eroded surface?
    5·2 answers
  • Explain the role that heat plays in phase change. You will need to describe heat’s role in the phase change using terms such as
    7·1 answer
  • When forklift moves a crate, it performs _______.
    12·2 answers
  • Un Iceberg, con forma aproximada a la de un paralelepípedo (rectángulo en 3D), flota en el mar de modo que la parte fuera del ag
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!