Answer:
See the answer below
Explanation:
The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.
<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>
<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>
Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18
and wet environment with annual precipitation of not less than 262 cm.
The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.
'Pressure' is (force) / (area).
The only choice with those units is #1 .
Answer:
The variation and distribution of traits in a population depend on genetic and environmental factors. Genetic variation can result from mutations caused by environmental factors or errors in DNA replication, or from chromosomes swapping sections during meiosis.
Explanation:
Hope this helps!
<h3><u>Given</u> :</h3>
Three identical resistors of resistances 5Ω, 10Ω and 30Ω are connected with a battery of 12V
<h3><u>To Find</u> :</h3>
We have to find current through the each resistor and equivalent resistance of circuit
<h3><u>SoluTion</u> :</h3>
➝ Equivalent resistance of series connection is given by
➝ We know that, Equal current flow through each resistor in series connection.
➝ As per ohm's law, Current flow through a conductor is directly proportional to the applied potential difference.
◈ <u>Equivalent resistance</u> :
⇒ Req = R1 + R2 + R3
⇒ Req = 5 + 10 + 30
⇒ <u>Req = 45Ω</u>
◈ <u>Current flow in circuit</u> :
⇒ V = IReq
⇒ 12 = I × 45
⇒ <u>I = 0.27A</u>
፨ Therefore, 0.27A current will flow through each resistor.
U need to set up n solve the general eqn for simple harmonic motion:
x" = -(k/m)x
solution is x(t) = (x0)*cos(wt) + (v0/w)*sin(wt)
where w=sqrt(k/m), x0 is x-position at t=0 and v0 is vel at t=0
u already calculated f in Q.2 and w = 2*pi*f
x0 is 0 as it starts at eqm
v0 is given at 5.1
so u have x(t)
vel is given by x'(t) = (x0)*(-w)*sin(wt) + (v0/w)*w*cos(wt)
substitute t=0.32, x0=0, v0=5.1 n w in the above, u can solve for v at t=0.32.