Answer: Determine whether (–x)3 + 5(–x) + 1 is equivalent to x3 + 5x + 1.
To determine if a function is even, we need to check if f(-x)=f(x).
Answer:
Ratio 1 = a(240
=b)120
=c)360
Ratio 2=a)400
=b)320
Step-by-step explanation:
On both of the ratios you first add them then divide one by one like this for example 2+1+3= 6
then 2/6 ÷720 = 120 ×2 =240 then you do this to the other numbers as well.
Mdkdgsmsmsgsbjslsgsvsvsvsjs
Answer:
since the rate at which concentration inside the cell is proportional to the difference in the concentration of the solute in the blood stream and the concentration within the cell, then the rate of change of concentration within the cell is equals to K(L-C).
Thus, the required differential equation is Δc/Δt = K( L - C ).
Step-by-step explanation:
B. (6, -8)
First, you need to figure out the slope of the line
(y1 - y2) / (x1 - x2)
After substituting points D(-3, 4) A(3, -4)
[4 - (-4)] / (-3 - 3)
(8) / (-6)
The slope of the line is -8/6 or -4/3 simplified
Then you can put it in point slope form:
(y - y1) = m(x - x1)
(y - y1) = -4/3(x - x1)
The point that I am using for point slope form is A(3, -4)
[y - (-4)] = -4/3(x - 3)
y + 4 = -4/3(x - 3)
Next you have to simplify the equation so that y is isolated
y + 4 = -4/3(x - 3)
First distribute the -4/3
y + 4 = -4/3(x) + (-4/3)(-3)
y + 4 = -4/3x + 4
Subtract 4 on both sides
y + 4 - 4 = -4/3x + 4 - 4
y = -4/3x
Now that you have y = -4/3x, you can substitute the values until one of them makes the equation equal
For example) (6, -8)
-8 = -4/3(6)
-8 = -8
So since (6, -8) fits in the slope intercept equation, it must me collinear with points A and D
~~hope this helps~~