Answer:
V₂ → 106.6 mL
Explanation:
We apply the Ideal Gases Law to solve the problem. For the two situations:
P . V = n . R . T
Moles are still the same so → P. V / R. T = n
As R is a constant, the formula to solve this is: P . V / T
P₁ . V₁ / T₁ = P₂ .V₂ / T₂ Let's replace data:
(1.20 atm . 73mL) / 112°C = (0.55 atm . V₂) / 75°C
((87.6 mL.atm) / 112°C) . 75°C = 0.55 atm . V₂
58.66 mL.atm = 0.55 atm . V₂
58.66 mL.atm / 0.55 atm = V₂ → 106.6 mL
Answer:
[H⁺] = 3.16 × 10⁻⁵ mol/L
Explanation:
Given data:
pH of solution = 4.5
Hydrogen ion concentration = ?
Solution;
pH = -log [H⁺]
we will rearrange this formula:
[H⁺] = 10∧-pH
[H⁺] = 10⁻⁴°⁵
[H⁺] = 3.16 × 10⁻⁵ mol/L
Answer:
<h3>The answer is 32 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 768 g
volume = 24 cm³
We have

We have the final answer as
<h3>32 g/cm³</h3>
Hope this helps you
Answer:
volume of the container will decreases if pressure increases.
Explanation:
According to Boyle's law:
Pressure is inversely proportional to volume which means if pressure of a gas increases the volume of the gas will decreases as gas molecules will collide and come closer forcefully so volume will decreases. And its formula for determining volume and pressure is:
<em>PV=nRT</em>
where "R" is a ideal gas constant
"T" is temperature and
"n" is number of particles given in moles while "V" is volume and "P" is pressure.
Answer:
Es la cantidad de protones menos la cantidad de electrones.
Explanation:
Es la cantidad de protones menos la cantidad de electrones.
Por cierto, suscríbete a Kevin Tuna Music