Answer : The final concentration of the seawater is, 2.909 mole/L
Explanation :
Formula used for osmotic pressure :

where,
= osmotic pressure = 70.0 bar = 70 atm
R = solution constant = 0.0821 Latm/moleK
T= temperature of solution = 
C = final concentration of seawater = ?
Now put all the given values in the above formula, we get the concentration of seawater.


Therefore, the final concentration of the seawater is, 2.909 mole/L
Answer:
I' really don't know I'm sorry
Answer:
given that
....the mass of the metal is 20g(0.02kg)
....specific heat capacity(c) is 0.4J/g°C
....ΔT=??
heat(Q)=3.9KJ(3900J)
Q=mcΔT
ΔT= Q/mc
.....=3900÷(20g x 0.4J/g°C)
.....=487.5°C
When reversing a given reaction, we simply change the sign of the standard enthalpy change value. Therefore, the reaction will become:
H₂O → H₂ + 0.5O₂, ΔH = 286kJ
This is because if a certain amount of energy is released when a reaction occurs, the same amount of energy must be supplied for the reaction to occur in the reverse direction.
Answer:
The answer to your question is 34 g of H₂O₂
Explanation:
Data
mass of H₂O₂ = ?
mass of O₂ = 32 g
Process
1.- Write the balanced chemical reaction
H₂O₂ ⇒ H₂ + O₂
2.- Calculate the molar mass of H₂O₂ and O₂
Molar mass H₂O₂ = (1 x 2) + (16 x 2) = 34 g
Molar mass of O₂ = 2 x 16 = 32 g
3.- Use proportions to calculate the mass of O₂
34g of H₂O₂ -------------- 32g of O₂
x -------------- 32g of O₂
x = (32 x 34) / 32
x = 34 g of H₂O₂