Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Answer:
Jupiter. Although it is a gas planet, it has a ton of mass. Mass can determine the weight of an object. We can thereby assume that Jupiter weighs way more than most planets.
Answer:
The force will have to increase
Explanation:
Since Juan has upgraded from a sports car to a large truck, based on Newton's second law of motion, the force needed to keep the truck going at the same speed will have to increase.
According to Newton's second law "the force on an object is equal to the product of its mass and acceleration".
Force = mass x acceleration
A truck has a larger mass compared to a sports car.
By virtue of this, to make sure both automobiles attain the same speed, the force powering them to accelerate must be the same.
Therefore, the force from the engine must increase.
<span>internet tension = mass * acceleration internet tension = 23 – Friction tension = 14 * acceleration Friction tension = µ * 14 * 9.8 = µ * 137.2 23 – µ * 137.2 = 14 * acceleration Distance = undemanding speed * time undemanding speed = ½ * (preliminary speed + very final speed) Distance = ½ * (preliminary speed + very final speed) * time Distance = 8.a million m, preliminary speed = 0 m/s, very final speed = a million.8 m/s 8.a million = ½ * (0 + a million.8) * t Time = 8.a million ÷ 0.9 = 9 seconds Acceleration = (very final speed – preliminary speed) ÷ time Acceleration = (a million.8 – 0) ÷ 9 = 0.2 m/s^2 23 – µ * 137.2 = 14 * 0.2 resolve for µ</span>
Answer:
During charging by conduction, both objects acquire the same type of charge. If a negative object is used to charge a neutral object, then both objects become charged negatively. ... In this case, electrons are transferred from the neutral object to the positively charged rod and the sphere becomes charged positively.