Answer:
Explanation:
b) Gravity reduces the initial upward velocity to zero in a time of
t = v/g = 40/10 = 4 s
a) h = v₀t + ½gt² = 40(4) + ½(-10)4² = 80 m
or
v² = u² + 2as
h = (0² - 40²) / 2(-10) = 80 m
That statement is false
Our subconscious tend to give a strong influence to our behaviours even if we are not feeling it directly.
For example, let's say that there is a boy that hurt by cats and it's ingrained in his head that cats possess high level of danger to him. Even after that boy grow up, his subsconcious would most likely cause a certain level of paranoia that make him either scared of cats or simply annoyed by seeing them.
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).
Answer:
- The energy that must be added to the electron to move it to the third excited state is -1.153 eV
- The energy that must be added to the electron to move it to the fourth excited state is -1.181 eV
Explanation:
Given;
Energy of electron in ground state (n = 1 ) = 1.23 eV
E₁ = 1.23 eV
Eₙ = E₁ /n²
where;
E₁ is the energy of the electron in ground state
n is the energy level,
For third excited state, n = 4
E₄ = E₁ /4²
E₄ = (1.23 eV) / 16
E₄ = 0.077 eV
Change in energy level, = E₄ - E₁ = 0.077 eV - 1.23 eV = -1.153 eV
The energy that must be added to the electron to move it to the third excited state is -1.153 eV
For fourth excited state, n = 5
E₅ = E₁ /5²
E₄ = (1.23 eV) / 25
E₄ = 0.049 eV
Change in energy level, = E₅ - E₁ = 0.049 eV - 1.23 eV = -1.181 eV
The energy that must be added to the electron to move it to the fourth excited state is -1.181 eV