Answer:
Charge on each is 2 x 10⁻¹⁰.
Explanation:
We know that Force between two point charges is given b the Coulomb's law as:
F = kq₁q₂/r^2
k = 9 x 10^9
r = 3.00 cm
= 0.03 m
q₁ = q₂
F = 4.00 x 10^-7
Rearranging the formula, we get:
F = k q²/r²
q² = Fr²/k
q² = 4 x 10⁻⁷ x 0.03²/(9x10⁹)
q² = 4 x 10⁻²⁰
q = 2 x 10⁻¹⁰
As there is force of repulsion between the charges, the charges must be both positive or both negative.
Answer:
Do find the answer in the attachment herein.
Explanation:
From the attached diagram:
I. Activation energy = Activated complex - ∆H(reactants)
Activation energy = 162-140 = 22Kj.
II. ∆H(reaction) = ∆H(products) - ∆H(reactants)
∆H(reaction) = 37 - 140 = -103Kj.
The direction of the magnetic force on the wire is west.
The magnetic force acting on the moving protons acts northward in the horizontal plane. If the thumb is up (current flows vertically up), the wrapped finger will be counterclockwise.
Therefore, the direction of the magnetic field is counterclockwise. Here, the magnetic field is pointing upwards (vertical magnetic field) and the electrons are moving east. Applying Fleming's left-hand rule here, we can see that the direction of force is along the south direction.
As the change in magnetic flux increases upwards, Lenz's law indicates that the induced magnetic field of the induced current must resist and the inside of the loop must be directed downwards. Using the right-hand rule, we can see that a clockwise current is induced.
Learn more about the magnetic fields here: brainly.com/question/7802337
#SPJ4