Answer:
hi
Step-by-step explanation:
hi
Answer:
-2
Step-by-step explanation:
maybe?
Given:
The graph of a downward parabola.
To find:
The domain and range of the graph.
Solution:
Domain is the set of x-values or input values and range is the set of y-values or output values.
The graph represents a downward parabola and domain of a downward parabola is always the set of real numbers because they are defined for all real values of x.
Domain = R
Domain = (-∞,∞)
The maximum point of a downward parabola is the vertex. The range of the downward parabola is always the set of all real number which are less than or equal to the y-coordinate of the vertex.
From the graph it is clear that the vertex of the parabola is at point (5,-4). So, value of function cannot be greater than -4.
Range = All real numbers less than or equal to -4.
Range = (-∞,-4]
Therefore, the domain of the graph is (-∞,∞) and the range of the graph is (-∞,-4].
if it's a mix fraction, then you write 22 1/2. if improper fraction, then write 45/2
Given:
The table of values.
To find:
The least-squares regression line for the data set in the table by using the desmos graphing calculator.
Solution:
The general form of least-squares regression line is:
...(i)
Where, m is the slope and b is the y-intercept.
By using the desmos graphing calculator, we get

Substitute these values in (i).


Therefore, the correct option is A.