The moons volume is that of 2 percent of the earth.
The potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
<h3>
What is the energy in a capacitor?</h3>
The energy stored in a capacitor is an electrostatic potential energy.
It is related to the charge(Q) and voltage (V) between the capacitor plates.
It is represented as 'U'.
<h3>
How to determine the potential difference</h3>
Formula:
Potential difference, V is the ratio of the charge to the capacitance of a capacitor.
It is calculated using:
V = Q ÷ C
Where Q = charge 5 × 10∧-5C and C = capacitance 10∧-9
Substitute the values into the equation
Potential difference, V = 5 × 10∧-5 ÷ 10∧-9 = 5 × 10∧4 volts
<h3>
How to determine the energy stored</h3>
Formula:
Energy, U = 1 ÷ 2 (QV)
Where Q= charge and V = potential difference across the capacitor
Energy, U = 1 ÷ 2 ( 5 × 10∧-5 × 5 × 10∧4)
= 0.5 × 25 × 10∧-1
= 0.5 × 2.5
= 1. 25 Joules
Therefore, the potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
Learn more about capacitance here:
brainly.com/question/14883923
#SPJ1
Answer:
a)
, b)
, c) 
Explanation:
a) The capacitance of two parallel plates capacitor with dielectric is given by the following expression:

Where:
- Dielectric constant.
- Vaccum permitivity.
- Plate area.
- Distance between plates.
Hence, the capacitance of the system is:



b) The charge can be found by using the definition of capacitance:




c) The energy stored in the charged capacitor is:




Answer:
a) 665 kg.m/s
b) 2.97 kN
Explanation:
The impulse is given by:

where
va=velocity after
vb=velocity before
The velocity just before is given by:

The velocity just after is zero because there wasn't a rebound.
So the impulse is:

The impulse is also given by:
