Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
<h2>
The seagull's approximate height above the ground at the time the clam was dropped is 4 m</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 3 s
Substituting
s = ut + 0.5 at²
s = 0 x 3 + 0.5 x 9.81 x 3²
s = 44.145 m
The seagull's approximate height above the ground at the time the clam was dropped is 4 m
The definition of speed is (distance covered) / (time to cover the distance) .
So a unit of speed has to be (a unit of length) / (a unit of time) .
Here are several perfectly fine units of speed:
-- miles per hour
-- feet per second
-- meters per second
-- kilometers per hour
-- inches per second
-- centimeters per minute
-- yards per Century
-- furlongs per fortnight
-- nanometers per microsecond
-- Smoots per week
-- parsecs per millenium
Since g is constant, the force the escaping gas exerts on the rocket will be 10.4 N
<h3>
What is Escape Velocity ?</h3>
This is the minimum velocity required for an object to just escape the gravitational influence of an astronomical body.
Given that the velocity of a 0.25kg model rocket changes from 15m/s [up] to 40m/s [up] in 0.60s. The gravitational field intensity is 9.8N/kg.
To calculate the force the escaping gas exerts of the rocket, let first highlight all the given parameters
- Mass (m) of the rocket 0.25 Kg
- Initial velocity u = 15 m/s
- Final Velocity v = 40 m/s
- Gravitational field intensity g = 9.8N/kg
The force the gas exerts of the rocket = The force on the rocket
The rate change in momentum of the rocket = force applied
F = ma
F = m(v - u)/t
F = 0.25 x (40 - 15)/0.6
F = 0.25 x 41.667
F = 10.42 N
Since g is constant, the force the escaping gas exerts on the rocket is therefore 10.4 N approximately.
Learn more about Escape Velocity here: brainly.com/question/13726115
#SPJ1