Ionic bonds are formed when there is complete transfer of valence electrons between two atoms.
Electronegativity tells the trend of an atom to atract electrons.
You should search for the complete set of rules that indicate whether an ionic or covalent bond happens.
There are two relevant rules to state if whether an ionic bond will happen:
- When the difference of electronegativities between the two atoms is greater than 2.0, then the bond is ionic.
- When the difference is between 1.6 and 2.0, the bond is ionic if one of the elements is a metal.
You need to list the electronegativities of the five elements (there are tables with this information)
Element electronegativity
Cu: 1.9
H: 2.2
Cl 3.16
I: 2.66
S: 2.58
Differences:
Cu / S: 2.58 - 1.9 = 0.68
H / S: 2.58 - 2.2 = 0.38
Cl / S: 3.16 - 2.58 =0.58
I / S: 2.66 - 2.58 = 0.08
Those differences are too low to consider that the bond is ionic.
Then the answer is that none of those atoms forms an ionic bond with sulfur.
Potential I think because if the rubber band is being held and stretched them that’s all potential
Yes, they are the same. They are equivalent.
Answer:107.1 g, 124.1 g
Explanation:
The equation of the reaction is;
Al2S3(s) + 6H20(l) ----> 2Al(OH)3(s) + 3H2S(g)
Hence;
For Al2S3
Number of moles= reacting mass/molar mass
Number of moles = 158g/150gmol-1 =1.05 moles
If 1 mole of Al2S3 yields 3 moles of H2S
1.05 moles of Al2S will yield
1.05 × 3/1 = 3.15 moles
Mass of H2S = 3.15moles × 34 gmol-1 = 107.1 g
For water
Number of moles of water = 131g/18gmol-1= 7.3 moles
6 moles of water yields 3 moles of H2S
7.3 moles of water will yield 7.3 × 3/6 = 3.65 moles of H2S
3.65 moles × 34 gmol-1 =124.1 g