Answer:
As ΔABC is an <u>isosceles triangle</u>:
⇒ BA = BC
(the dashes on the line segments indicate they are of equal measure)
⇒ ∠BAC = ∠BCA = 55°
⇒ ∠BCA = ∠BAD = 55°
Angles on a <u>straight line</u> sum to 180°
⇒ ∠ADE + ∠EDC = 180°
⇒ 98° + ∠EDC = 180°
⇒ ∠EDC = 82°
As BE intersects AC, the <u>vertically opposite angles</u> are <em>equal</em>:
⇒ ∠BDC = ∠ADE = 98°
⇒ ∠ADB = ∠EDC = 82°
Interior angles in a triangle sum to 180°
⇒ ∠BAD + ∠ADB + ∠ABD = 180°
⇒ 55° + 82° + ∠ABD= 180°
⇒ ∠ABD = 180° - 55° - 82°
⇒ ∠ABD = 43°
<h2>Answer-Average rate of change(A(x)) of f(x) over a interval [a,b] is given by:</h2><h2 /><h2>A(x) = \frac{f(b)-f(a)}{b-a}A(x)= </h2><h2>b−a</h2><h2>f(b)−f(a)</h2><h2> </h2><h2> </h2><h2 /><h2>Given the function:</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^xf(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>x</h2><h2> </h2><h2 /><h2>We have to find the average rate of change from x = 1 to x= 2</h2><h2 /><h2>At x = 1</h2><h2 /><h2>then;</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^1 = 5f(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>1</h2><h2> =5</h2><h2 /><h2>At x = 2</h2><h2 /><h2>then;</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^2=20 \cdot \frac{1}{16} = 1.25f(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>2</h2><h2> =20⋅ </h2><h2>16</h2><h2>1</h2><h2> </h2><h2> =1.25</h2><h2 /><h2>Substitute these in above formula we have;</h2><h2 /><h2>A(x) = \frac{f(2)-f(1)}{2-1}A(x)= </h2><h2>2−1</h2><h2>f(2)−f(1)</h2><h2> </h2><h2> </h2><h2 /><h2>⇒A(x) = \frac{1.25-5}{1}=-3.75A(x)= </h2><h2>1</h2><h2>1.25−5</h2><h2> </h2><h2> =−3.75</h2><h2 /><h2>therefore, average rate of change of the function f(x) from x = 1 to x = 2 is, -3.75</h2>
<h2>Please Mark me as brainlist. </h2>
Your favorite restaurant offers a total of 13 desserts, of which 11 have ice cream as a main ingredient and 9 have fruit as a main ingredient. Assuming that all of them have either...
Answer:
whats the question?
Step-by-step explanation:
Answer:
equation for perpendicular bisector passing through CB is;
y=⁴/³– 5/30