Answer:
1. 48 mols
2. 0.2 M
5. 1.25 L
Explanation:
Molarity= mols divided by liters
Hope this helps not sure about 3 and 4
Pick up plastic, reduce waste, reduce pollutants
A. the height of the cactus plants
Explanation:
The dependent variable in this experiment designed to test this hypothesis is the height of the cactus plants.
In a hypothesis statement, we can always deduce the dependent and independent variables.
- Independent variables do not rely on other variables. They are usually the cause of the phenomenon observed in an experiment. In this experiment, it is the rainfall on the cactus plant.
- Dependent variable is that variable that relies on the independent variable. It is usually the effect of changes in independent variable.
- The height of the cactus plant depends on the amount of rainfall in an area.
learn more:
Controlled experiment brainly.com/question/1621519
#learnwithBrainly
2Ca(OH)2(aq) + 2FeCl3(aq) on the dead locs
Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol