Aluminum oxide produced : = 79.152 g
<h3>Further explanation</h3>
Given
46.5g of Al
165.37g of MnO
Required
Aluminum oxide produced
Solution
Reaction
2 Al (s) + 3 MnO (s) → 3 Mn (s) + Al₂O₃ (s)
mol = mass : Ar
mol = 46.5 : 27
mol = 1.722
mol = 165.37 : 71
mol = 2.329
mol : coefficient ratio Al : MnO = 1.722/2 : 2.329/3 = 0.861 : 0.776
MnO as a limiting reactant(smaller ratio)
So mol Al₂O₃ based on MnO as a limiting reactant
From equation , mol Al₂O₃ :
= 1/3 x mol MnO
= 1/3 x 2.329
= 0.776
Mass Al₂O₃ (MW=102 g/mol) :
= 0.776 x 102
= 79.152 g
2-Methyl-4-oxo-pentanoic acid is unlikely to produce 2-Methyl-3-butanone upon strong heating.
Upon heating, the β ketoacid becomes unstable and decarboxylates, leading to the formation of the methyl ketone.
A carboxylic acid is an organic acid that contains a carboxyl group (C(=O)OH) attached to an R-group. The general formula of a carboxylic acid is R−COOH or R−CO2H, with R referring to the alkyl, alkenyl, aryl, or other group.
Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.
Full question :
Q. Which reactant is unlikely to produce the indicated product upon strong heating?
- A) 2,2-Dimethylpropanedioic acid 2-methylpropanoic acid
- B) 2-Ethylpropanedioic acid Butanoic acid
- C) 2-Methyl-3-oxo-pentanoic acid 3-Pentanone
- D) 2-Methyl-4-oxo-pentanoic acid 2-Methyl-3-butanone
- E) 4-Methyl-3-oxo-heptanoic acid 3-Methyl-2-hexanone
Hence, option (D) is correct.
Learn more about carboxylic acid here : brainly.com/question/26855500
#SPJ4
Answer:
177253.125hrs
Explanation:
Given parameters:
Number of hours spend per day on phone = 6.25hrs
Unknown:
Average hours pend by an average American if they lived for 77.7yrs
Solution:
Let us find the number of hours an average American spends on their phone per year;
there are 365days in a year
Number of hours = 365 x 6.25 = 2,281.25hrs
Now, if they lived for 77.7yrs;
They will spend = 77.7 x 2,281.25 = 177253.125hrs
Bonds between atoms break and new ones form and energy is either given out or taken in