Answer : The enthalpy of the reaction = -1839.6 KJ
Solution : Given,
= -520.0 KJ/mole
= -1699.8 KJ/mole
The balanced chemical reaction is,

Formula used :


We know that the standard enthalpy of formation of the element is equal to Zero.
Therefore, the enthalpy of formation of (Mn) and (Al) is equal to zero.
Now, put all the values in above formula, we get
![\Delta (H_{f})_{reaction}=[2moles\times (-1699.8 KJ/mole)}+3moles\times (0\text{ KJ/mole}})]-[(3moles\times(-520.0KJ/mole }+4moles\times(0\text{ KJ/mole})]](https://tex.z-dn.net/?f=%5CDelta%20%28H_%7Bf%7D%29_%7Breaction%7D%3D%5B2moles%5Ctimes%20%28-1699.8%20KJ%2Fmole%29%7D%2B3moles%5Ctimes%20%280%5Ctext%7B%20KJ%2Fmole%7D%7D%29%5D-%5B%283moles%5Ctimes%28-520.0KJ%2Fmole%20%7D%2B4moles%5Ctimes%280%5Ctext%7B%20KJ%2Fmole%7D%29%5D)
= (-3399.6) + (1560)
= -1839.6 KJ
(If this is correct, can I have Brainlist?)
Answer:
D) anomalous volcanoes such as those in Hawaii
Rows of elements are called periods. The period number<span> of an element signifies the highest unexcited energy level for an electron in that element.
</span>Columns of elements help define element groups<span>. </span>Elements within a group share<span> several common properties. Groups are elements have the same outer electron arrangement.</span>
<em>Answer :</em> 72.05 g/mol
<span>
<em>Explanation : </em>
Let's </span>assume that the given gas is an ideal gas. Then we can use ideal gas equation,<span>
PV = nRT<span>
</span>
Where,
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the gas </span></span>is,<span>
P = 777 torr = 103591 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³<span>
T = (</span>126 + 273<span>) = 399 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
103591 Pa x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 399 K<span>
n = 3.90 x 10</span>⁻³<span> mol
</span>Moles (mol) = mass (g) /
molar mass (g/mol)<span>
Mass of the gas = </span><span>0.281 g
</span>Moles of the gas = 3.90 x 10⁻³ mol
<span>Hence,
molar mass of the gas = mass / moles
= 0.281 g / </span>3.90 x 10⁻³ mol
<span> = 72.05 g/mol
</span>