Speed= distance/time
Speed= 150000m/7200s=20.83m/s(cor.to.2d.p.)
Answer:
v ’= 21.44 m / s
Explanation:
This is a doppler effect exercise that changes the frequency of the sound due to the relative movement of the source and the observer, the expression that describes the phenomenon for body approaching s
f ’= f (v + v₀) / (v-
)
where it goes is the speed of sound 343 m / s, v_{s} the speed of the source v or the speed of the observer
in this exercise both the source and the observer are moving, we will assume that both have the same speed,
v₀ = v_{s} = v ’
we substitute
f ’= f (v + v’) / (v - v ’)
f ’/ f (v-v’) = v + v ’
v (f ’/ f -1) = v’ (1 + f ’/ f)
v ’= (f’ / f-1) / (1 + f ’/ f) v
v ’= (f’-f) / (f + f’) v
let's calculate
v ’= (3400 -3000) / (3000 +3400) 343
v ’= 400/6400 343
v ’= 21.44 m / s
Answer:
<h2>5.53 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>5.53 J</h3>
Hope this helps you
Oxygen is diatomic, so its degree of freedom, (f1)= 5,
also its number of moles, n1= 1
Helium is monoatomic, so its degree of freedom (f2)= 3
and its number of moles given is, n2=2
Now using formula of effective degree of freedom of mixture, (f), we have:
f= (f1n1+f2n2)/(n1+n2)
= (5*1 + 3*2)/ (1+3)
=11/3
Also, from first law of thermodynamics;
U= n Cv. T = nRT(f2)
or, Cv = R. (f/2) (n & T cancel)
We know f=11/6,
substituting the value in above relation, we have:
Cv= R. 11/3*2
= R. 11/6
Also, Cp-Cv = R
or, Cp- R.(11/6)= R
or, Cp= R(11/6 )+1
= 17/6 R
Therefore, Cp/Cv = 17/11
Answer:MA = 15
Explanation:The mechanical advantage for an inclined plane is MA=l/h or length divided by height. So, plugging these variables into the equation would have it set up like this: MA = 30/2. When 30 is divided by 2 you get your answer for mechanical advantage, which would be 15