Answer:
The magnitude of the induced voltage in the loop is 20 mV.
Explanation:
given;
length of loop, L = 0.43 m
width of loop,w = 0.43 m
velocity of moved loop, v = 0.15m/s
magnetic field strength,B = 0.31 T
To determine the magnitude of the induced voltage in the loop, we apply Faraday's law;
magnitude induced E.M.F = BLv
magnitude induced E.M.F = 0.31 x 0.43 x 0.15 = 0.02 V = 20 mV
Therefore, the magnitude of the induced voltage in the loop is 20 mV.
Answer:
The answer is 0.5 Hz
Explanation:
Its pretty easy to get the answer. One hertz (Hz) is equal to one cycle or period per second. So, just divide the period by the number of seconds.
1 period/2 secs = 1/2 Hz or 0.5 Hz
There’s nothing to answer to
Answer with Explanation:
We are given that mass of block=0.0600 kg
Initial speed of block=0.63 m/s
Distance of block from the hole when the block is revolved=0.47 m
Final speed=3.29 m/s
Distance of block from the hole when the block is revolved=
a.We have to find the tension in the cord in the original situation when the block has speed =

Because tension is equal to centripetal force
Substitute the values

b.

c.Work don=Final K.E-Initial K.E


