The power dissipated across a component can be calculated through the formula P=I^2xR
Substituting the values in we get P=(0.5)^2x10=2.5W
Answer:
μ = 0.6
Explanation:
given,
speed of car = 29.7 m/s
Radius of curve = 50 m
θ = 30.0°
minimum static friction = ?
now,
writing all the forces acting along y-direction
N cos θ - f sinθ = mg
N cos θ -μN sinθ = mg

now, writing the forces acting along x- direction
N sin θ + f cos θ = F_{net}
N cos θ + μN sinθ = F_{net}

taking cos θ from nominator and denominator




now, inserting all the given values

μ = 0.6
Answer:
B. For a gas in a closed container at a constant temperature, the product of the pressure and the volume remains constant.
Explanation:
The rest are societal laws, as they are telling you something you should avoid or follow.
Hope this helps :)
Answer:
(i)
, (ii)
, (iii) 
Explanation:
(i)
and
represent the points where particle has a velocity of zero and spring reach maximum deformation, Given the absence of non-conservative force and by the Principle of Energy Conservation, the position where particle is at maximum speed is average of both extreme positions:

(ii) Maximum accelerations is reached at
and
.

(iii) Greatest net forces exerted on the particle are reached at
and
.
