The answer is C guide and inspire good conduct
Given:
L = 1 mH =
H
total Resistance, R = 11 
current at t = 0 s,
= 2.8 A
Formula used:

Solution:
Using the given formula:
current after t = 0.5 ms = 
for the inductive circuit:


I =0.011 A
Answer:0.58 m
Explanation:
The initial velocity of the ball is u = 2.0 m/s
The height of the table is, h = 1.0 m
The ball falls in vertical direction under acceleration due to gravity.
Time taken for ball to hit the floor:
h= ut + 0.5gt² ( from the equation of motion)
1.0 m=2.0 m/s × t+0.5 × 9.8 m/s²× t²
Solving this for t,
t = 0.29 s ( we have neglected the negative value of t)
In the same time, the ball would cover a horizontal distance of :
s = u t
⇒s = 2.0 m/s×0.29 s = 0.58 m
Thus, the landing spot is 0.58 m away from the table.
True.
A zero on the Kelvin temperature scale is also know as Absolute Zero because that is when the atom(s) have literally no kinetic energy.