Here we have to get the spin of the other electron present in a orbital which already have an electron which has clockwise spin.
The electron will have anti-clockwise notation.
We know from the Pauli exclusion principle, no two electrons in an atom can have all the four quantum numbers i.e. principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m) and spin quantum number (s) same. The importance of the principle also restrict the possible number of electrons may be present in a particular orbital.
Let assume for an 1s orbital the possible values of four quantum numbers are n = 1, l = 0, m = 0 and s = 
.
The exclusion principle at once tells us that there may be only two unique sets of these quantum numbers:
1, 0, 0, +
and 1, 0, 0, -
.
Thus if one electron in an orbital has clockwise spin the other electron will must be have anti-clockwise spin.
The action or power of focusing one's attention or mental effort.
a substance produced by a living organism that acts as a catalyst to bring about a specific biochemical reaction.
a substance that slows down or prevents a particular chemical reaction or other process, or that reduces the activity of a particular reactant, catalyst, or enzyme.
You cant draw here if i were u i would look it up
Answer:
Rate = 116m⁻¹s⁻¹[lactose][H]⁺
Explanation:
the formula for rate of reaction is given as
Rate = k[lactose]∧α[H]⁺∧β
we solve for the value of α and β
([lactose]₁/[lactose]₂)∧α
α = 
when we divide this equation
α = 
α = 1
we find β
R₁/R₂ = 0.01/0.02(0.001/0.001)∧β
0.00116/0.00232 = 0.5(1)∧β
β = 1
Rate = k[lactose]∧α[H]⁺∧β
we have to find the value for k
k = 0.00116/0.01(0.001)
k = 0.00116/0.00001
= 116m⁻¹s⁻¹
<u>Rate = 116m⁻¹s⁻¹[lactose][H]⁺</u>
Answer:
pH = 7.46
Explanation:
2H₂O ⇄ H₃O⁺ . OH⁻ Kw = [H₃O⁺] . [OH⁻]
[H₃O⁺] = [OH⁻]
√0.12×10⁻¹⁴ = [H₃O⁺] → 3.46×10⁻⁸ M
- log [H₃O⁺] = pH
- log 3.46×10⁻⁸ = pH → 7.46