The option that is the correct one concerning the uncontrolled burn phase is:
- The uncontrolled burn phase is characterized by uncontrolled combustion in a cylinder until fuel accumulated during ignition delay is burned.
<h3>What is uncontrolled combustion?</h3>
Uncontrolled Combustion is known to be the the time and place in which a kind of an ignition will stop and it is said to be never fixed by anything in regards to the compression ignition engine as seen in SI engines.
Note that the four Stages of combustion are:
1. Pre-flame combustion
2. Uncontrolled combustion
3. Controlled combustion and
4. After burning
Hence, The uncontrolled burn phase is characterized by uncontrolled combustion in a cylinder until fuel accumulated during ignition delay is burned as all the fuel need to burn out.
Learn more about burn phase from
brainly.com/question/14414049
#SPJ1
Answer:
16 cm
Explanation:
For protons:
Energy, E = 300 keV
radius of orbit, r1 = 16 cm
the relation for the energy and velocity is given by

So,
.... (1)
Now,

Substitute the value of v from equation (1), we get

Let the radius of the alpha particle is r2.
For proton
So,
... (2)
Where, m1 is the mass of proton, q1 is the charge of proton
For alpha particle
So,
... (3)
Where, m2 is the mass of alpha particle, q2 is the charge of alpha particle
Divide equation (2) by equation (3), we get

q1 = q
q2 = 2q
m1 = m
m2 = 4m
By substituting the values

So, r2 = r1 = 16 cm
Thus, the radius of the alpha particle is 16 cm.
Answer:
One when it enters the glass slab from air and second time when it enters the air through glass slab. When light rays travelling through air enters glass slab, they get refracted and bend towards the normal. Now the direction of refracted ray changes again when it comes out of the glass slab into air.
Answer:
Explanation:
Based on the wave model of light, physicists predicted that increasing light amplitude would increase the kinetic energy of emitted photoelectrons, while increasing the frequency would increase measured current.
Contrary to the predictions, experiments showed that increasing the light frequency increased the kinetic energy of the photoelectrons, and increasing the light amplitude increased the current.
Based on these findings, Einstein proposed that light behaved like a stream of particles called photons with an energy of \text{E}=h\nuE=hνstart text, E, end text, equals, h, \nu.
The work function, \PhiΦ\Phi, is the minimum amount of energy required to induce photoemission of electrons from a metal surface, and the value of \PhiΦ\Phi depends on the metal.
The energy of the incident photon must be equal to the sum of the metal's work function and the photoelectron kinetic energy: