Answer:
The correct option is: 4. its ionization energy decreases
Explanation:
Ionization energy refers to the energy required to pull a valence electron completely from the valence shell of a gaseous atom.
Now, in the <u>periodic table of chemical elements</u>, as we down a group, the atomic radius increases, so the effective nuclear charge experienced by the valence electron decreases. Therefore, the <u>ionization energy decreases</u><u>, down the group.</u>
As we across a period, the atomic radius usually decreases, so the effective nuclear charge experienced by the valence electron increases. Therefore, usually the <u>ionization energy increases</u><u>, across the period.</u>
<u>Therefore, as the atomic radius increases, the effective nuclear charge experienced by the valence electron decreases and thus the ionization energy also decreases.</u>
Explanation:
It is given that,
Wavelength of monochromatic light, 
Slits separation, 
(a) We need to find the angle corresponding to the first bright fringe. For bright fringe the equation is given as :
, n = 1



(b) We need to find the angle corresponding to the second dark fringe, n = 1
So, 




Hence, this is the required solution.
We know, F = k * q₁ * q₂ / r²
Substitute the known values,
F = 9 * 10⁹ * 5 * 7 / (1.2)²
F = 315 * 10⁹ / 1.44
F = 218.75 * 10⁹ N
F = 2.1875 * 10¹¹ N [ Final Answer ]
Hope this helps!
ANSWER
My answer is in the photo above
The Coriolis effect is strongest at the north and south poles, and zero on the equator (zero latitude).