Answer:
1. Diverges
2. Converges
3. Diverges
Step-by-step explanation:
Solution:-
Limit comparison test:
- Given, ∑
and suppose ∑
such that both series are positive for all values of ( n ). Then the following three conditions are applicable for the limit:
Lim ( n-> ∞ )
= c
Where,
1) If c is finite: 0 < c < 1, then both series ∑
and ∑
either converges or diverges.
2) If c = 0, then ∑
converges only if ∑
converges.
3) If c = ∞ or undefined, then ∑
diverges only if ∑
diverges.
a) The given series ∑
is:
(n = 1) ∑^∞ ![[ \frac{n^2+1}{2n^3-1} ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7Bn%5E2%2B1%7D%7B2n%5E3-1%7D%20%5D)
- We will make an educated guess on the comparative series ∑
by the following procedure.
(n = 1) ∑^∞ ![[ \frac{n^2( 1 + \frac{1}{n^2} )}{n^3 ( 2 - \frac{1}{n^2} ) } ] = [ \frac{( 1 + \frac{1}{n^2} )}{n( 2 - \frac{1}{n^2} ) } ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7Bn%5E2%28%201%20%2B%20%5Cfrac%7B1%7D%7Bn%5E2%7D%20%29%7D%7Bn%5E3%20%28%202%20-%20%5Cfrac%7B1%7D%7Bn%5E2%7D%20%29%20%7D%20%5D%20%3D%20%20%5B%20%5Cfrac%7B%28%201%20%2B%20%5Cfrac%7B1%7D%7Bn%5E2%7D%20%29%7D%7Bn%28%202%20-%20%5Cfrac%7B1%7D%7Bn%5E2%7D%20%29%20%7D%20%5D)
- Apply the limit ( n - > ∞ ):
(n = 1) ∑^∞
.... The comparative series ( ∑
)
- Both series ∑
and ∑
are positive series. You can check by plugging various real number for ( n ) in both series.
- Compute the limit:
Lim ( n-> ∞ ) ![[ \frac{n^2 + 1}{2n^3 - 1} * 2n ] = [ \frac{2n^3 + 2n}{2n^3 - 1} ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7Bn%5E2%20%2B%201%7D%7B2n%5E3%20-%201%7D%20%2A%202n%20%5D%20%3D%20%20%5B%20%5Cfrac%7B2n%5E3%20%2B%202n%7D%7B2n%5E3%20-%201%7D%20%20%5D)
Lim ( n-> ∞ ) ![[ \frac{2n^3 ( 1 + \frac{1}{n^2} ) }{2n^3 ( 1 - \frac{1}{2n^3} ) } ] = [ \frac{ 1 + \frac{1}{n^2} }{ 1 - \frac{1}{2n^3} } ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7B2n%5E3%20%28%201%20%2B%20%5Cfrac%7B1%7D%7Bn%5E2%7D%20%29%20%7D%7B2n%5E3%20%28%201%20-%20%5Cfrac%7B1%7D%7B2n%5E3%7D%20%29%20%7D%20%5D%20%3D%20%20%5B%20%5Cfrac%7B%201%20%2B%20%5Cfrac%7B1%7D%7Bn%5E2%7D%20%20%7D%7B%20%201%20-%20%5Cfrac%7B1%7D%7B2n%5E3%7D%20%20%7D%20%5D)
- Apply the limit ( n - > ∞ ):
Lim ( n-> ∞ )
=
= 1 ... Finite
- So from first condition both series either converge or diverge.
- We check for ∑
convergence or divergence.
- The ∑
= ( 1 / 2n ) resembles harmonic series ∑ ( 1 / n ) which diverges by p-series test ∑ (
) where p = 1 ≤ 1. Hence, ∑
- In combination of limit test and the divergence of ∑
, the series ∑
given also diverges.
Answer: Diverges
b)
The given series ∑
is:
(n = 1) ∑^∞ ![[ \frac{n}{n^\frac{5}{2} +5} ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7Bn%7D%7Bn%5E%5Cfrac%7B5%7D%7B2%7D%20%2B5%7D%20%5D)
- We will make an educated guess on the comparative series ∑
by the following procedure.
(n = 1) ∑^∞ ![[ \frac{n( 1 )}{n ( n^\frac{3}{2} + \frac{5}{n} ) } ] = [\frac{1}{( n^\frac{3}{2} + \frac{5}{n} )} ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7Bn%28%201%20%20%29%7D%7Bn%20%28%20n%5E%5Cfrac%7B3%7D%7B2%7D%20%20%2B%20%5Cfrac%7B5%7D%7Bn%7D%20%20%29%20%7D%20%5D%20%3D%20%20%5B%5Cfrac%7B1%7D%7B%28%20n%5E%5Cfrac%7B3%7D%7B2%7D%20%20%2B%20%5Cfrac%7B5%7D%7Bn%7D%20%20%29%7D%20%20%5D)
- Apply the limit ( n - > ∞ ) in the denominator for ( 5 / n ), only the dominant term n^(3/2) is left:
(n = 1) ∑^∞
.... The comparative series ( ∑
)
- Both series ∑
and ∑
are positive series. You can check by plugging various real number for ( n ) in both series.
- Compute the limit:
Lim ( n-> ∞ ) ![[ \frac{n}{n^\frac{5}{2} +5} * n^\frac{3}{2} ] = [ \frac{n^\frac{5}{2}}{n^\frac{5}{2} +5} ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7Bn%7D%7Bn%5E%5Cfrac%7B5%7D%7B2%7D%20%2B5%7D%20%2A%20n%5E%5Cfrac%7B3%7D%7B2%7D%20%5D%20%3D%20%5B%20%5Cfrac%7Bn%5E%5Cfrac%7B5%7D%7B2%7D%7D%7Bn%5E%5Cfrac%7B5%7D%7B2%7D%20%2B5%7D%20%20%5D)
Lim ( n-> ∞ ) ![[ \frac{n^\frac{5}{2}}{n^\frac{5}{2} ( 1 + \frac{5}{n^\frac{5}{2}}) } ] = [ \frac{1}{1 + \frac{5}{n^\frac{5}{2}} } ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7Bn%5E%5Cfrac%7B5%7D%7B2%7D%7D%7Bn%5E%5Cfrac%7B5%7D%7B2%7D%20%28%201%20%2B%20%5Cfrac%7B5%7D%7Bn%5E%5Cfrac%7B5%7D%7B2%7D%7D%29%20%7D%20%5D%20%3D%20%5B%20%5Cfrac%7B1%7D%7B1%20%2B%20%5Cfrac%7B5%7D%7Bn%5E%5Cfrac%7B5%7D%7B2%7D%7D%20%7D%20%5D)
- Apply the limit ( n - > ∞ ):
Lim ( n-> ∞ )
=
= 1 ... Finite
- So from first condition both series either converge or diverge.
- We check for ∑
convergence or divergence.
- The ∑
= (
) converges by p-series test ∑ (
) where p = 3/2 > 1. Hence, ∑
- In combination of limit test and the divergence of ∑
, the series ∑
given also converges.
Answer: converges
Comparison Test:-
- Given, ∑
and suppose ∑
such that both series are positive for all values of ( n ).
-Then the following conditions are applied:
1 ) If (
-
) < 0 , then ∑
diverges only if ∑
diverges
2 ) If (
-
) ≤ 0 , then ∑
converges only if ∑
converges
c) The given series ∑
is:
(n = 1) ∑^∞ ![[ \frac{4 + 3^2}{2^n} ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7B4%20%2B%203%5E2%7D%7B2%5En%7D%20%5D)
- We will make an educated guess on the comparative series ∑
by the following procedure.
(n = 1) ∑^∞ ![[ \frac{3^n ( \frac{4}{3^n} + 1 )}{2^n} ]](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7B3%5En%20%28%20%5Cfrac%7B4%7D%7B3%5En%7D%20%20%2B%201%20%29%7D%7B2%5En%7D%20%20%5D)
- Apply the limit ( n - > ∞ ) in the numerator for ( 4 / 3^n ), only the dominant terms ( 3^n ) and ( 2^n ) are left:
(n = 1) ∑^∞
... The comparative series ( ∑
)
- Compute the difference between sequences (
-
):
, for all values of ( n )
- Check for divergence of the comparative series ( ∑
), using divergence test:
∑
= (n = 1) ∑^∞
diverges
- The first condition is applied when (
-
) ≥ 0, then ∑diverges only if ∑
diverges.
Answer: Diverges