Answer:
The statements that must be true are:
XY and JK form four right angles ⇒ B
XY ⊥ JK ⇒ C
JP = KP ⇒ E
m∠JPX = 90° ⇒ F
Step-by-step explanation:
From the given figure
∵ Line XY is the perpendicular bisector of the line segment JK
→ That means line XY is the line of symmetry of the line segment JK
∴ XY ⊥ JK ⇒ C
∵ XY ∩ JK at point P
∴ P is the midpoint of JK
∵ XY ⊥ JK
∴ ∠JPX, ∠KPX, ∠JPY, and ∠KPY are right angles
∴ XY and JK form four right angles ⇒ B
∵ The measure of the right angle is 90°
∴ m∠JPX = m∠KPX = m∠JPY = m∠KPY = 90°
∴ m∠JPX = 90° ⇒ F
∵ P is the midpoint of JK
∴ JP = KP ⇒ E
The answer is: z² .
__________________________
Given: <span>(x÷(y÷z))÷((x÷y)÷z) ; without any specified values for the variables;
_______________________
we shall simplify.
___________________
We have:
__________
</span>(x÷(y÷z)) / ((x÷y)÷z) .
_____________________________________
Start with the first term; or, "numerator": (x÷(y÷z)) ;
_____________________________________
x ÷ (y / z) = (x / 1) * (z / y) = (x * z) / (1 *y) = [(xz) / y ]
_____________________________________
Then, take the second term; or "denominator":
_____________________________________
((x ÷ y) ÷z ) = (x / y) / z = (x / y) * (1 / z) = (x *1) / (y *z) = [x / (zy)]
_________________________________________
So (x÷(y÷z)) / ((x÷y)÷z) = (x÷(y÷z)) ÷ ((x÷y)÷z) =
[(xz) / y ] ÷ [x / (zy)] = [(xz) / y ] / [x / (zy)] =
[(xz) / y ] * [(zy) / x] ;
_______________________________________
The 2 (two) z's "cancel out" to "1" ; and
The 2 (two) y's = "cancel out" to "1" ;
______________________________________________
And we are left with: z * z = z² . The answer is: z² .
______________________________________________
Step-by-step explanation:
This is the correct answer.
Even according to calculator and working.
So not quite sure why those options are incorrect?