The correct answer is (A) 2.0 J
Total energy of the pendulum is the sum of its kinetic and potential energy. At the instant of time, when the pendulum is at a height <em>h</em> and has a speed <em>v, </em>Its energy is given by,

Substitute 2.0 kg for <em>m</em>, the mass of the pendulum, 9.81 m/s² for <em>g</em>, the acceleration due to gravity, 0.10 m for <em>h and 4.0 m/s for </em>v<em>.</em>

The pendulum has an initial energy of 20 J. the energy lost is given by,

Thus, the energy lost by the pendulum is (A) 2.0 J
Answer:
Explanation:
Its the 2nd one on the left (the bolded one)
When you catch the ball you act surprised, action- reaction
Answer:
Explanation:
Resistivity is given by
where A is cross-sectional area, R is resistance, L is the length and
is the reistivity. Substituting 0.0625 for R, 3.14 × 10-6 for A and 3.5 m for L then the resistivity is equivalent to
Using
V = Amplitude x angular frequency(omega)
But omega= 2πf
= 2πx875
=5498.5rad/s
So v= 1.25mm x 5498.5
= 6.82m/s
B. .Acceleration is omega² x radius= 104ms²