Answer:
Number of moles = 0.057 × 10⁻⁷ mol
Explanation:
Given data:
Mass of SiO₂ = 3.4 × 10⁻⁷ g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass of SiO₂ = 60 g/mol
by putting values,
Number of moles = 3.4 × 10⁻⁷ g / 60 g/mol
Number of moles = 0.057 × 10⁻⁷ mol
Answer: B. photosynthesis
Explanation: Glucose and oxygen react together in plant cells to produce energy.
Answer:
16 °C
Explanation:
Step 1: Given data
- Provided heat (Q): 811.68 J
- Mass of the metal (m): 95 g
- Specific heat capacity of the metal (c): 0.534 J/g.°C
Step 2: Calculate the temperature change (ΔT) experienced by the metal
We will use the following expression.
Q = c × m × ΔT
ΔT = Q/c × m
ΔT = 811.68 J/(0.534 J/g.°C) × 95 g = 16 °C
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH. In variable form, a thermochemical equation would look like this:
A + B → CΔH = (±) #
Where {A, B, C} are the usual agents of a chemical equation with coefficients and “(±) #” is a positive or negative numerical value, usually with units of kJ.
please mark as brainliest
There are many combinations because it is not all about the number of chemicals, but also about the size of the strand. The longer the strand the more combinations there are and more variations and various lengths provide various results.