Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
Resistance of a wire is directly proportional to its length and inversely proportional to the square of its radius.
Thus, if the length is doubled, and the radius is halved:
R₂ = 2R₁/(1/2)²
R₂ = 8R₁
Therefore the resistance increases eight times.
34. The element would have 34 protons. Also 34 electrons.
Answer:
Explanation:
a) Magnification = image height / object height = -9 / 18 = -0.5
b) Magnification = - image distance / object distance = -0.5
so image distance = 0.5 object distance
1/focal length = 1/image distance + 1/object distance
1/6 = 1/(0.5 object distance) + 1/object distance
object distance = 18.0 cm
c) Image appears behind the lens.