Answer:
A. K = 0.546 eV
B. cooper and iron will not emit electrons
Explanation:
A. This is a problem about photoelectric effect. Then you have the following equation:
(1)
K: kinetic energy of the ejected electron
Ф: Work function of the metal = 2.48eV
h: Planck constant = 4.136*10^{-15} eV.s
λ: wavelength of light = 410nm - 750nm
c: speed of light = 3*10^8 m/s
As you can see in the equation (1), higher the wavelength, lower the kinetic energy. Then, the maximum kinetic energy is obtained with the lower wavelength (410nm). Thus, you replace the values of all variables :

B. First you calculate the energy of the photon with wavelengths of 410nm and 750nm

You compare the energies E1 and E2 with the work functions of the metals and you can conclude:
sodium = 2.3eV < E1
cesium = 2.1 eV < E1
cooper = 4.7eV > E1 (this metal will not emit electrons)
iron = 4.5eV > E1 (this metal will not emit electrons)
Answer:
A horse pulls a cart, a person walks on the ground
Explanation:
Air resistance, also called drag, acts upon a falling body by slowing the body down to thr point where it stops accelerating, and it falls at a constant speed, known as the terminal volocity of a falling object. Air resistance depends on the cross sectional area of the object, which is why the effect of air resistance on a large flat surfaced object is much greater than on a small, streamlined object.
Answer:
2.25in³
Explanation:
For a 12 awg conductor the minimum volume allowance as stated by the NEC is 2.25in³
See attached Table 314.16(B) from NEC 2011
Answer:
The object starts away from the origin and then moves toward the origin at a constant velocity. Next, it stops for one second. Finally, it moves away from the origin at a greater constant velocity.