We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
B. The angle will cause the suns rays to be reflected downward to the other scout
Answer:
t = 0.37 seconds
Explanation:
t = (1/4)T
Maximum acceleration is;
a_max = Aω²
In simple harmonic motion, we know that v_max = Aω
Thus, a_max = v_max•ω
ω = a_max/v_max
We know that Period is given by;
T = 2π/ω
From initially, t = (1/4)T so, T = 4t
Thus, 4t = 2π/(a_max/v_max)
t = (2π/4)(v_max/a_max)
We are given;
Maximum velocity;v_max = 1.47 m/s
Max acceleration;a_max =6.24 m/s²
Thus,
t = (2π/4)(1.47/6.24)
t = 0.37 seconds
Answer:
0.084 kg
Explanation:
I = 0.80 N-s (East wards) = 0.80 i N-s
u = 3.8 m/s = - 3.8 i m/s
v = 5.7 m/s = 5.7 i m/s
Let m be the mass of bat.
I = m (v - u)
0.8 i = m ( 5.7 i + 3.8 i)
0.8 i = m x 9.5 i
m = 0.084 kg
Answer:
B) electrons
Explanation:
When charge is transferred by friction, induction or conduction, the charge carriers are the electrons.
In fact, protons and neutrons are found within the nucleus of the atoms, so they are tightly bound and they cannot be easily gained/given off. On the contrary, electrons are found in the electron clouds around the nucleus, so atoms can more easily gain/lose electrons, which become free and can be passed by an object to another.
The three methods of charging are:
- Friction: by rubbing two objects together, electrons may be transferred from one to another
- Induction: by moving a charged object closer to a neutral object, opposite charges in the neutral object migrate towards the opposite ends of the object, and if the object is connected to the ground, the charges of one polarity leave the object, leaving the object charged
- Conduction: by putting a charged object in contact with a neutral object, electrons can be transferred from the charged object to the neutral one