1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guajiro [1.7K]
3 years ago
8

What is the potential energy of a 3 kg rock sitting at the top of a 21 meter high cliff?

Physics
1 answer:
Svetradugi [14.3K]3 years ago
3 0

Answer:

618.03 J

Explanation:

Potential energy can be calculate using the following formula.

PE=m*g*h

where m is the mass, g is the acceleration due to gravity and h is the height.

In this situation, we have a 3 kilogram rock on a 21 meter high cliff. Therefore, the mass is 3 kg and the height is 21 m.

On Earth, the acceleration due to gravity is 9.81 m/s^2.

m=3 kg

h=21 m

g=9.81 m/s^2

Substitute these values into the formula.

PE=3*9.81*21

Multiply all the numbers together

PE=63*9.81

PE=618.03

The potential energy is 618.03 kg m^2/s^2, or 618.03 Joules

You might be interested in
Someone pls help me will give brainlist
Crazy boy [7]

Answer:

The volume is 5.6 L

The mass is 100.2g

Explanation:

Quantitative observations are more based on numbers and values

6 0
3 years ago
The pilot of an aircraft wishes to fly due west in a 33.9 km/h wind blowing toward the south. The speed of the aircraft in the a
diamong [38]

Answer:\theta =9.96^{\circ} North of west

Explanation:

Given

Plane wishes to fly in west

but wind with speed 33.9 km/h towards south obstructing its path

so plane must fly at an angle of \theta w.r.t west such that it final velocity is towards west

Plane absolute speed=195 km/h

To fly towards west velocity in Y direction should be zero

thus 195sin\theta =33.9

\theta =9.96^{\circ}

so Plane should head towards 9.96^{\circ} North of west in order to fly in west.

So plane

actual velocity is

v=-195cos9.96\hat{i}+195sin9.96\hat{j}

5 0
3 years ago
What distance does a police car travel if it is going 3.0 m/s for 20 seconds
Vladimir79 [104]

Answer:

60 meters

Explanation:

If you are going 3 meters in a second, and you are traveling for 20 seconds, you have to multiply

3meters/second*20seconds

cross out the seconds and you have

3 meters*20

60 meters

6 0
2 years ago
Construct a graph of position versus time for the motion of a dog, using the data in the table below. Explain how the graph indi
Lynna [10]

Answer:

The dog is moving at a constant speed

Explanation:

Given that,

Position : 5, 10, 15, 20, 25

Time = 5. 10, 15, 20, 25

We need to draw a position time graph

Using given data

A graph of position and time shows the speed.

According to graph,

The graph indicates that the dog is moving at a constant speed because the graph is straight line.

Hence, The dog is moving at a constant speed

6 0
3 years ago
A baseball player hits a homerun, and the ball lands in the left field seats, which is 103m away from the point at which the bal
Sati [7]

(a) The ball has a final velocity vector

\mathbf v_f=v_{x,f}\,\mathbf i+v_{y,f}\,\mathbf j

with horizontal and vertical components, respectively,

v_{x,f}=\left(20.5\dfrac{\rm m}{\rm s}\right)\cos(-38^\circ)\approx16.2\dfrac{\rm m}{\rm s}

v_{y,f}=\left(20.5\dfrac{\rm m}{\rm s}\right)\sin(-38^\circ)\approx-12.6\dfrac{\rm m}{\rm s}

The horizontal component of the ball's velocity is constant throughout its trajectory, so v_{x,i}=v_{x,f}, and the horizontal distance <em>x</em> that it covers after time <em>t</em> is

x=v_{x,i}t=v_{x,f}t

It lands 103 m away from where it's hit, so we can determine the time it it spends in the air:

103\,\mathrm m=\left(16.2\dfrac{\rm m}{\rm s}\right)t\implies t\approx6.38\,\mathrm s

The vertical component of the ball's velocity at time <em>t</em> is

v_{y,f}=v_{y,i}-gt

where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve for the vertical component of the initial velocity:

-12.6\dfrac{\rm m}{\rm s}=v_{y,i}-\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(6.38\,\mathrm s)\implies v_{y,i}\approx49.9\dfrac{\rm m}{\rm s}

So, the initial velocity vector is

\mathbf v_i=v_{x,i}\,\mathbf i+v_{y,i}\,\mathbf j=\left(16.2\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(49.9\dfrac{\rm m}{\rm s}\right)\,\mathbf j

which carries an initial speed of

\|\mathbf v_i\|=\sqrt{{v_{x,i}}^2+{v_{y,i}}^2}\approx\boxed{52.4\dfrac{\rm m}{\rm s}}

and direction <em>θ</em> such that

\tan\theta=\dfrac{v_{y,i}}{v_{x,i}}\implies\theta\approx\boxed{72.0^\circ}

(b) I assume you're supposed to find the height of the ball when it lands in the seats. The ball's height <em>y</em> at time <em>t</em> is

y=v_{y,i}t-\dfrac12gt^2

so that when it lands in the seats at <em>t</em> ≈ 6.38 s, it has a height of

y=\left(49.9\dfrac{\rm m}{\rm s}\right)(6.38\,\mathrm s)-\dfrac12\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(6.38\,\mathrm s)^2\approx\boxed{119\,\mathrm m}

6 0
3 years ago
Other questions:
  • Calculating acceleration worksheet
    7·1 answer
  • A student will study german at last 3 years
    8·1 answer
  • An electric current through neon gas produces several distinct wavelengths of visible light. What are the wavelengths (in nm) of
    11·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    7·1 answer
  • The power radiated by the sun is 3.90 1026 W. The earth orbits the sun in a nearly circular orbit of radius 1.50 1011 m. The ear
    7·1 answer
  • Heat transfers through Earth's systems in different ways. In which atmospheric action can we see evidence of conduction? Cold ai
    13·1 answer
  • Help me !!!!!!!!!!!!!!!!!!!!!!!!!!
    7·2 answers
  • Which materials are most thick ? Please help
    12·1 answer
  • A force of 20 N is exerted by an electric field on a test charge of 8.0 x 10² C at a point, P. What is the electric field streng
    11·1 answer
  • According to current scientific understanding, the idea that the milky way galaxy might be home to a civilization millions of ye
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!