Answer:
4.24m/s
Explanation:
Potential energy at the top= kinetic energy at the button
But kinetic energy= sum of linear and rotational kinetic energy of the hoop
PE= mgh
KE= 1/2 mv^2
RE= 1/2 I ω^2
Where
m= mass of the hoop
v= linear velocity
g= acceleration due to gravity
h= height
I= moment of inertia
ω= angular velocity of the hoop.
But
I = m r^2 for hoop and ω = v/r
giving
m g h = 1/2 m v^2 + 1/2 (m r^2) (v^2/r^2) = 1/2 m v^2 + 1/2 m v^2 = m v^2
and m's cancel
g h = v^2
Hence
v= √gh
v= √10×1.8
v= 4.24m/s
Answer:
0.00034 m
Explanation:
Since the length of the aluminium bar, L is given by , L = 1.0000 + 2.4 × 10⁻⁵T and T = 14.1°C, we substitute the value of T into L. So, we have L = 1.0000 + 2.4 × 10⁻⁵ × 14.1°C = 1.0000 + 0.0003384 = 1.0003384 m. The change in length is thus 1.0003384 - 1.0000 = 0.0003384 m ≅ 0.00034 m
He proposed the theory of Continental Drift. He believed that all of the continents were once joined together in a super continent he called Pangea (not sure if that's spelled right I studied this awhile ago). He proved this by showing similarities in fossils in completely different continents and showing how well the continents could fit together.
Answer:
The fundamental frequency of can is 2.7 kHz.
Explanation:
Given that,
A typical length for the auditory canal in an adult is about 3.1 cm, l = 3.1 cm
The speed of sound is, v = 336 m/s
We need to find the fundamental frequency of the canal. For a tube open at only one end, the fundamental frequency is given by :

So, the fundamental frequency of can is 2.7 kHz. Hence, this is the required solution.
Answer:
Explanation:
Given,
initial angular speed, ω = 3,700 rev/min
=
final angular speed = 0 rad/s
Number of time it rotates= 46 times
angular displacement, θ = 2π x 46 = 92 π
Angular acceleration


