1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rjkz [21]
3 years ago
8

Describe what you have been taught about the relationship between basic science research, and technological innovation before th

is class. Have you been told that it is similar to the linear model? Is your view of this relationship different after studying this unit's lectures and readings? Explain why in 3-4 sentences
Engineering
1 answer:
alexira [117]3 years ago
3 0

Answer:

With the Breakthrough of Technology, the rate at which things are done are becoming much more easy. but without basic science, innovation towards technology cannot occur, so the both work hand in hand in the world of technology today.

Explanation:

Technological innovation and Basic science research plays a major role in the world of science and technology today, while we all want technology innovation the more, without basic science, innovation cannot come in place,

Just as we are going further in technology, breakthroughs and growth are been made which helps on the long run in science research which in turn has made things to be done much better and easily.

You might be interested in
H. Blasius correlated data on turbulent friction factor in smooth pipes. His equation f s m o o t h ≈ 0.3164 Re − 1 / 4 fsmooth≈
tiny-mole [99]

Answer:

Therefore the angle  the pipe needed to make the static pressure constant along the pipe is θ = 4° 16'

Explanation:

The first step to take is to calculate the the velocity of flow through a pipe

Q =Av

Where Q = is the discharge through pipe

A = Area of the pipe

v = the flow of velocity

We substitute 0.001 m^3/s for Q and 0.03 m for D

Q= Av

0.001=Av

Substitute π/4 D² for A

0.001 = π/4 D² (v)

v = 0.004/πD²

D = he diameter of the pipe

substitute 3 cm  for D

v=  0.004/π * [3 cm * 1 m/100 cm]²

v =1.414 m/s

Obtain fluid properties from the table Kinematic viscosity and Dynamic of water

p =1000 kg /m³

μ= 1.002 * 10^ ⁻³ N.s/m³

Thus,

we write the expression to determine  the Reynolds number of flow

Re = pvD/μ

Re = is the Reynolds number

p =density

μ = dynamic viscosity at 20⁰C

We then substitute 1000 kg /m³ in place of p, 1.002 * 10^ ⁻³ N.s/m³ for μ,

1.414 m/s for v and 0.03 m for D

Thus,

Re = 1000 * 1.414 * 0.03/ 1.002 * 10^ ⁻³ = 42335

The next step is to calculate the friction factor form the Blasius equation

f = 0.3164 (Re)^1/4

f = friction factor

We substitute 42335 for Re

f = 0.3164 (42335)1/4

=0.022

The next step is to write the expression to determine the friction head loss

hl = flv²/2gD

hl = head loss

l = length of pipe

g=  acceleration due to gravity

We then again substitute 0.022 for f, 1.414 m/s for v, 0.03 m for D, and 9.8 m/s² for g.

so,

hl = flv²/2gD

hl/L = 0.022 * 1.414²/2 * 9.81 * 0.03

sinθ = 0.07473

θ = 4° 16'

Therefore the angle  the pipe needed to make the static pressure constant along the pipe is θ = 4° 16'

3 0
3 years ago
Electric Resistance Heating. A house that is losing heat at a rate of 50,000 kJ/h when the outside temperature drops to 4 0C is
ryzh [129]

Answer:

a) \dot W = 0.978\,kW, b) I = \left(50000\,\frac{kJ}{h} \right)\cdot \left(\frac{1}{3600}\,\frac{h}{s}\right)\cdot \left(\frac{1}{COP_{real}} \right) - 0.978\,kW

Explanation:

a) The ideal Coefficient of Performance for the heat pump is:

COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}

COP_{HP} = \frac{298.15\,K}{298.15\,K - 277.15\,K}

COP_{HP} = 14.198

The reversible work input is:

\dot W = \frac{\dot Q_{H}}{COP_{HP}}

\dot W = \left(\frac{50000\,\frac{kJ}{h} }{14.198} \right)\cdot \left(\frac{1}{3600}\,\frac{h}{s}  \right)

\dot W = 0.978\,kW

b) The irreversibility is given by the difference between real work and ideal work inputs:

I = \dot W_{real} - \dot W_{ideal}

I = \left(50000\,\frac{kJ}{h} \right)\cdot \left(\frac{1}{3600}\,\frac{h}{s}\right)\cdot \left(\frac{1}{COP_{real}} \right) - 0.978\,kW

7 0
4 years ago
For the system form of the basic laws, the momentum of a system can change as a result of: a. pressure acting on the system. b.
Ymorist [56]

Answer: F. All the above.

Explanation:

Basically, if an object is moving, it moves with a certain velocity and mass. Momentum of a body is a product of mass and velocity. The sum of momentum of individual bodies is equal to the entire system momentum. For instance, a block v is moving due to an applied force F, with a velocity V and the gravity g. Due to gravity, the weight is mg. Due to gravity, the weight is acting downward. Applied force is acting on the block surface area A.

Pressure = Surface force/Surface area.

Surface force is acting on the surface applied. So, acting pressure = Force applied/area.

Pressure and surface force is acting on the body. Body forces also act on the system. Forces due to gravity is also referred to as body force. As a result of weight of the box, Normal force produced by the rough surface is equal to the Weight. As a result of rough surface, frictional forces are produced which opposes the block to move forward. All the external forces create a net total force due to which the block move with a velocity and acceleration.

In Newton's second law, Ftotal is equal to mass × acceleration.

Therefore, we can conclude that momentum can change as a result of all these forces because mass × acceleration is related to total force and momentum is equal to mass × velocity.

7 0
4 years ago
Read 2 more answers
Which type of work is an electrical engineer most likely to do?
IRISSAK [1]
I believe A is the answer: creat materials for electrical cables

Hope this helps you have a great day
5 0
3 years ago
Read 2 more answers
A 150-lbm astronaut took his bathroom scale (a spring scale) and a beam scale (compares masses) to the moon where the local grav
kozerog [31]

Answer:

a)Wt =25.68 lbf

b)Wt = 150 lbf

F= 899.59 N

Explanation:

Given that

g = 5.48 ft/s^2.

m= 150 lbm

a)

Weight on the spring scale(Wt) = m g

We know that

1\ lbf=32.17 \ lmb.ft/s^2

Wt = 150 x 5.48/32 lbf

Wt =25.68 lbf

b)

On the beam scale

This is scale which does not affects by gravitational acceleration.So the wight on the beam scale will be 150 lbf.

Wt = 150 lbf

If the plane is moving upward with acceleration 6 g's then the for F

F = m a

We know that

1\ ft/s^2= 0.304\ m/s^2

5.48\ ft/s^2= 1.66\ m/s^2

a=6 g's

a=9.99\ m/s^2

So

F = 90 x 9.99 N

F= 899.59 N

3 0
3 years ago
Other questions:
  • Write a static method called quadrant that takes as parameters a pair of real numbers representing an (x, y) point and that retu
    9·1 answer
  • A robot was able to detect a burning smell at a shopping mall and prevent a major disaster. Which function enabled the robot to
    15·1 answer
  • In the elastic range of a tension test, an extensometer records an extension of 1.207 x 10-2 mm as the load increases by 5 kN. C
    15·1 answer
  • 4. Lockout/tagout (LOTO) is a safety procedure that ensures dangerous machines are properly shut off and not started up again pr
    13·1 answer
  • 2. The block is released from rest at the position shown, figure 1. The coefficient of
    9·1 answer
  • What is the equation for photosynthesis​
    12·2 answers
  • Why are you asked to draw a sketch of a Bridge-Design on a graph sheet/A4 sheet?
    11·2 answers
  • Engineers designed a motorcycle helmet from a long-lasting and safe material that protects the wearer from accidents and excessi
    7·1 answer
  • Nonshielded cable with a 1.5-inch diameter should have a minimum bending radius of
    14·1 answer
  • 1. Discuss the benefits of observing good safety measures in relation to an increase in
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!