Answer:
The fraction of kinetic energy lost in the collision in term of the initial energy is 0.49.
Explanation:
As the final and initial velocities are known it is possible then the kinetic energy is possible to calculate for each instant.
By definition, the kinetic energy is:
k = 0.5*mV^2
Expressing the initial and final kinetic energy for cars A and B:


Since the masses are equals:

For the known velocities, the kinetics energies result:




The lost energy in the collision is the difference between the initial and final kinectic energies:


Finally the relation between the lost and the initial kinetic energy:


Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
The first one is electrical energy
It has to due with numbers so I would say the last one!
Explanation:
Below is an attachment containing the solution.