Answer:

Explanation:
Given:
- mass of John,

- mass of William,

- length of slide,

(A)
height between John and William, 
<u>Using the equation of motion:</u>

where:
v_J = final velocity of John at the end of the slide
u_J = initial velocity of John at the top of the slide = 0
Now putting respective :


<u>Now using the law of conservation of momentum at the bottom of the slide:</u>
<em>Sum of initial momentum of kids before & after collision must be equal.</em>

where: v = velocity with which they move together after collision

is the velocity with which they leave the slide.
(B)
- frictional force due to mud,

<u>Now we find the force along the slide due to the body weight:</u>



<em><u>Hence the net force along the slide:</u></em>

<em>Now the acceleration of John:</em>



<u>Now the new velocity:</u>



Hence the new velocity is slower by

Hello there.
<span>If we increase the force applied to an object and all other factors remain the same that amount of work will
</span><span>C. Increase
</span>
Answer:
27 m/s
Explanation:
Given:
v₀ = 15 m/s
a = 3 m/s²
t = 4 s
Find: v
v = at + v₀
v = (3 m/s²) (4 s) + (15 m/s)
v = 27 m/s
Answer:
Mass of the oil drop, 
Explanation:
Potential difference between the plates, V = 400 V
Separation between plates, d = 1.3 cm = 0.013 m
If the charge carried by the oil drop is that of six electrons, we need to find the mass of the oil drop. It can be calculated by equation electric force and the gravitational force as :


, e is the charge on electron
E is the electric field, 


So, the mass of the oil drop is
. Hence, this is the required solution.