The initial mass fraction of the spacecraft that must be burned and ejected to achieve an increase in speed is 0,00219 m/s
<h3>What fraction of the initial mass of the spacecraft?</h3>
Increase the speed: Vf-Vi = 2.2 m/s
Speed of aircraft: Vr = 400 m/s
Speed of ejected products: Vrel = 1000 m/s
The answer is:
So, the initial mass fraction of the spacecraft that must be burned and ejected to achieve an increase in speed is 0,00219 m/s
Learn more about spaceship speed fraction brainly.com/question/28256735
#SPJ4
Answer:
Explanation:
This problem relates to interference of light in thin films .
The condition of bright fringe in thin films which is sandwitched by two layers of medium having lesser refractive index is as follows.
2nt = (2n+1) λ / 2 , n is refractive index of thin layer , t is its thickness , λ is wavelength of light .
2 x 1.5 t = λ / 2 , if n = 0 for minimum thickness.
2 x 1.5 t = 600 / 2 nm
t = 100 nm .
Use kinematic equations to solve:
1) yf = yo + vo*t + 1/2at²
yf = final height
yo = initial height
vo = initial velocity
a = acceleration
t = time
yf - yo = vo*t + 1/2at²
yf - yo = h
vo = 0
Thus,
h = 1/2at²
h = 1/2(9.8)(12)² = 705.6 m
2) vf = vo + at
vo = 0
Thus,
vf = at
vf = (9.8)(12) = 117.6 m/s
It's either A or B because it starts off as nuclear energy.
Answer:
In the electric field, the like charges repel each other, and the unlike charges attract each other, whereas in a magnetic field the like poles repel each other and the unlike poles attract each other.
Explanation: