It provides a way to test a hypothesis
Answer: 2.3 moles
Explanation:
Recall that based on Avogadro's law, 1 mole of any substance has 6.02 x 10^23 atoms
So if 1 mole of Aluminum = 6.02 x 10^23 atoms
Then, Z moles = 1.4 x 10^24 atoms
To get the value of Z, we cross multiply:
1 mole x 1.4 x 10^24 atoms = Z x (6.02 x 10^23 atoms)
1.4 x 10^24 atoms = Z x (6.02 x 10^23)
Hence, Z = (1.4 x 10^24 atoms) ➗ (6.02 x 10^23 atoms)
Z =2.3 moles
Thus, there are 2.3 moles in 1.4 x 10^24 atoms of aluminum.
Answer:
c = 0.528 J/g.°C
Explanation:
Given data:
Mass of titanium = 43.56 g
Heat absorbed = 0.476 KJ = 476 j
Initial temperature = 20.5°C
Final temperature = 41.2°C
Specific heat capacity = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 41.2°C - 20.5°C
ΔT = 20.7 °C
476 J = 43.56 g × c × 20.7 °C
476 J = 901.692 g.°C × c
c = 476 J / 901.692 g.°C
c = 0.528 J/g.°C